Bacteria: How Legionella defend their turf

Communities of bacteria that cause Legionnaire’s disease repel other bacteria by secreting an acid called HGA.
  1. Elisa D Hughes
  2. Michele S Swanson  Is a corresponding author
  1. University of Michigan Medical School, United States

Legionella pneumophila is a water-borne bacterium that takes up residence in engineered water systems, and if inhaled by susceptible people, it can cause a severe form of pneumonia known as Legionnaires’ disease. According to the Centers for Disease Control and Prevention, L. pneumophila infections are on the rise and are now the leading cause of water-associated illness in the United States. However, a major problem is that decontamination methods often fail to eradicate every single bacterium, which allows populations of bacteria to build up again (Cervero-Aragó et al., 2015; Berjeaud et al., 2016).

One way that Legionella manages to persist in the environment is by associating with biofilms – microbial communities that attach to surfaces and encase themselves in a protective matrix (Abu Khweek and Amer, 2018). The microbes in these communities engage in behaviors that mutually benefit each other, such as forming food chains or making up the sugar chains of the biofilm’s protective shield (Elias and Banin, 2012). Inhabitants of the biofilm must also repel other microbes that are unlikely to contribute to the community (Drescher et al., 2014; Özkaya et al., 2017). However, despite these biofilms being a threatening pool of infectious bacteria, little is known about how L. pneumophila socially behave. Now, in eLife, Tera Levin, Brian Goldspiel and Harmit Malik from the Fred Hutchinson Cancer Research Center report how highly dense populations of L. pneumophila can inhibit the growth of other bacteria belonging to the same or related species of Legionella (Levin et al., 2019).

Levin et al. found that L. pneumophila secrete a molecule called homogenetisic acid, or HGA for short, which is produced by the amino acids tyrosine and phenylalanine as they convert into more complex molecules. Legionella primarily secretes HGA after the bacteria have stopped replicating, during a period known as the stationary phase. Once secreted, HGA combines with oxygen and self-assembles into long chains to form a dark brown pigment. This pigment, called pyomelanin, is known to protect Legionella against light damage and to help them acquire iron, which is an essential micronutrient (Steinert et al., 1995; Zheng et al., 2013). Levin et al. show that HGA also has toxic properties that can defend Legionella communities from invading microbes.

These properties became evident when the researchers discovered that L. pneumophila mutants that fail to inhibit the growth of other Legionella bacteria did not produce HGA. Interestingly, secreted HGA is only toxic if oxygen is present in the environment, and Levin et al. argue that a reactive intermediate formed during the conversion of HGA to pyomelanin likely accounts for its inhibitory properties. HGA is also detoxified by reducing agents, including the amino acid cysteine, which must be present for L. pneumophila to grow in laboratory cultures.

One conundrum is how L. pneumophila avoids the toxic effects of HGA. As secretion of the inhibitor increases when the bacteria are in the stationary phase – a state typically associated with high bacterial density – Levin et al. speculated that genes involved in either quorum sensing (which leads to changes in gene regulation based on population density) or the stringent stress response may promote resistance to HGA. However, deleting known genes in each of these widespread cell-signaling pathways does not alter resistance or susceptibility to HGA. Instead, L. pneumophila cells are only susceptible to inhibition when at low density, regardless of whether they are in the stationary or replicating phase. It therefore remains to be discovered how individual L. pneumophila cells at high density protect themselves from HGA.

Thinking about the natural habitats of L. pneumophila, Levin et al. envision individual bacterial cells sticking to a surface, such as the interior of a water pipe (Figure 1). As L. pneumophila begin to replicate, they form a small colony, then grow to form a large cooperative community, likely sharing resources liberated by digestive enzymes that they have secreted (White and Cianciotto, 2019). After reaching a certain density, the residents protect their turf from other bacteria by releasing a pulse of HGA. Since the high concentration of bacteria in the colony also triggers resistance to HGA, the community is automatically protected from the inhibitor.

High-density colonies of Legionella protect themselves by secreting pulses of HGA.

The development of Legionella colonies begins with individual cells adhering to a surface, such as the inside of a water pipe. After reaching a certain density, the bacteria intensify the secretion of HGA, which prevents other Legionella cells from joining the colony. Image credit: Elisa D. Hughes (CC BY 4.0).

The work of Levin, Goldspiel and Malik provides an important insight into how Legionella persist within microbial communities, and also identifies several questions that warrant further investigation. First, as biofilms comprised of a single species are not common in nature (Elias and Banin, 2012), it would be useful to know more about the impact of HGA on non-Legionella bacteria. In addition, understanding how the reactive intermediate of HGA is able to inhibit Legionella, and how individuals within dense colonies of the pathogen acquire resistance, could significantly advance the broad field of microbiology ecology. Finally, it is tempting to speculate that the HGA inhibition and resistance pathways discovered by Levin et al. could help identify new ways of eliminating pathogenic Legionella from engineered water systems.

References

    1. Steinert M
    2. Engelhard H
    3. Flügel M
    4. Wintermeyer E
    5. Hacker J
    (1995)
    The lly protein protects Legionella pneumophila from light but does not directly influence its intracellular survival in Hartmannella vermiformis
    Applied and Environmental Microbiology 61:2428–2430.

Article and author information

Author details

  1. Elisa D Hughes

    Elisa D Hughes is in the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4897-8094
  2. Michele S Swanson

    Michele Swanson is in the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States

    For correspondence
    mswanson@umich.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2542-0266

Publication history

  1. Version of Record published: June 28, 2019 (version 1)

Copyright

© 2019, Hughes and Swanson

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,012
    Page views
  • 90
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisa D Hughes
  2. Michele S Swanson
(2019)
Bacteria: How Legionella defend their turf
eLife 8:e48695.
https://doi.org/10.7554/eLife.48695

Further reading

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.

    1. Microbiology and Infectious Disease
    Markéta Častorálová, Jakub Sýs ... Tomas Ruml
    Research Article Updated

    For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.