Abstract

Formation of long-range axons occurs over multiple stages of morphological maturation. However, the intrinsic transcriptional mechanisms that temporally control different stages of axon projection development are unknown. Here, we addressed this question by studying the formation of mouse serotonin (5-HT) axons, the exemplar of long-range profusely arborized axon architectures. We report that LIM homeodomain factor 1b (Lmx1b)-deficient 5-HT neurons fail to generate axonal projections to the forebrain and spinal cord. Stage-specific targeting demonstrates that Lmx1b is required at successive stages to control 5-HT axon primary outgrowth, selective routing, and terminal arborization. We show a Lmx1b→Pet1 regulatory cascade is temporally required for 5-HT arborization and upregulation of the 5-HT axon arborization gene, Protocadherin-alphac2, during postnatal development of forebrain 5-HT axons. Our findings identify a temporal regulatory mechanism in which a single continuously expressed transcription factor functions at successive stages to orchestrate the progressive development of long-range axon architectures enabling expansive neuromodulation.

Data availability

Raw ChIP-seq data GEO accession: GSE74315. RNA-seq data generated in this study and ChIP-seq analysis are deposited in NCBI GEO under accession code GSE130514.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lauren J Donovan

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. William C Spencer

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9700-8011
  3. Meagan M Kitt

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brent A Eastman

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine J Lobur

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kexin Jiao

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jerry Silver

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Evan S Deneris

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    For correspondence
    esd@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4211-9934

Funding

National Institute of Mental Health (P50 MH096972)

  • Evan S Deneris

National Institute of Mental Health (RO1 MH062723)

  • Evan S Deneris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All animal procedures used in this study were in strict accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Case Western Reserve University School of Medicine Institutional Animal Care and Use Committee (Animal Welfare Assurance Number A3145-01, protocol #: 2014-0044).

Copyright

© 2019, Donovan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,280
    views
  • 365
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren J Donovan
  2. William C Spencer
  3. Meagan M Kitt
  4. Brent A Eastman
  5. Katherine J Lobur
  6. Kexin Jiao
  7. Jerry Silver
  8. Evan S Deneris
(2019)
Lmx1b is required at multiple stages to build expansive serotonergic axon architectures
eLife 8:e48788.
https://doi.org/10.7554/eLife.48788

Share this article

https://doi.org/10.7554/eLife.48788

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.