Self-assembling manifolds in single-cell RNA sequencing data
Abstract
Single-cell RNA sequencing has spurred the development of computational methods that enable researchers to classify cell types, delineate developmental trajectories, and measure molecular responses to external perturbations. Many of these technologies rely on their ability to detect genes whose cell-to-cell variations arise from the biological processes of interest rather than transcriptional or technical noise. However, for datasets in which the biologically relevant differences between cells are subtle, identifying these genes is challenging. We present the self-assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify gene relevance and improve dimensionality reduction. We demonstrate its advantages over other state-of-the-art methods with experimental validation in identifying novel stem cell populations of Schistosoma mansoni, a prevalent parasite that infects hundreds of millions of people. Extending our analysis to a total of 56 datasets, we show that SAM is generalizable and consistently outperforms other methods in a variety of biological and quantitative benchmarks.
Data availability
The schistosome stem cell scRNAseq data generated in this study is available through the Gene Expression Omnibus (GEO) under accession number GSE116920.
-
Single-cell RNA sequencing of proliferative stem cell population from juvenile Schistosoma mansoniNCBI Gene Expression Omnibus, GSE116920.
-
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cellsNCBI Gene Expression Omnibus, GSE36552.
-
Adult mouse cortical cell taxonomy revealed by single cell transcriptomicsNCBI Gene Expression Omnibus, GSE71585-GPL17021.
-
The transcriptome and DNA methylome landscapes of human primordial germ cellsNCBI Gene Expression Omnibus, GSE63818.
-
Single-cell analysis uncovers clonal acinar cell heterogeneity in the adult pancreasNCBI Gene Expression Omnibus, GSE80032.
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cellsNCBI Gene Expression Omnibus, GSE45719.
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastomaNCBI Gene Expression Omnibus, GSE57872.
-
Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and developmentNCBI Gene Expression Omnibus, GSE94883.
-
Innate-like functions of natural killer T cell subsets result from highly divergent gene programsNCBI Gene Expression Omnibus, GSE74596.
-
Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner earNCBI Gene Expression Omnibus, GSE71982.
-
Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencingNCBI Gene Expression Omnibus, GSE57249.
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cellsNCBI Gene Expression Omnibus, GSE52529-GPL16791.
-
Single-cell RNA-seq reveals dynamic paracrine control of cellular variationNCBI Gene Expression Omnibus, GSE48968-GPL13112.
-
Oscope identifies oscillatory genes in unsynchronized single-cell RNAseq experimentsNCBI Gene Expression Omnibus, GSE64016.
-
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seqNCBI Gene Expression Omnibus, GSE52583-GPL13112.
-
Single-cell analysis of mixed-lineage states leading to a binary cell fate choiceNCBI Gene Expression Omnibus, GSE70245.
-
Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesisNCBI Gene Expression Omnibus, GSE71485.
-
Deciphering cell lineage specification during male sex determination with single-cell RNA sequencingNCBI Gene Expression Omnibus, GSE97519.
-
A molecular atlas of cell types and zonation in the brain vasculatureNCBI Gene Expression Omnibus, GSE99235.
-
Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medullaNCBI Gene Expression Omnibus, GSE99933.
-
Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seqNCBI Gene Expression Omnibus, GSE100471.
-
Temporal tracking of microglia activation in neurodegeneration at single-cell resolutionNCBI Gene Expression Omnibus, GSE103334.
-
Early emergence of cortical interneuron diversity in the mouse embryoNCBI Gene Expression Omnibus, GSE109796.
-
Single-cell transcriptional dynamics of flavivirus infectionNCBI Gene Expression Omnibus, GSE110496.
-
Single-cell RNA-seq supports a developmental hierarchy in human oligodendrogliomaNCBI Gene Expression Omnibus, GSE70630.
-
Transcriptional heterogeneity and lineage commitment in myeloid progenitorsNCBI Gene Expression Omnibus, GSE72857.
-
A survey of human brain transcriptome diversity at the single cell levelNCBI Gene Expression Omnibus, GSE67835.
-
Single-cell transcriptomics of the human endocrine pancreasNCBI Gene Expression Omnibus, GSE83139.
-
Cell type transcriptome atlas for the planarian Schmidtea mediterraneaNCBI Gene Expression Omnibus, GSE111764.
-
A Single-cell transcriptome atlas of the human pancreasNCBI Gene Expression Omnibus, GSE85241.
Article and author information
Author details
Funding
Burroughs Wellcome Fund
- Bo Wang
Arnold and Mabel Beckman Foundation
- Bo Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: In adherence to the Animal Welfare Act and the Public Health Service Policy on Humane Care and Use of Laboratory Animals, all experiments with and care of mice were performed in accordance with protocols approved by the Institutional Animal Care and Use Committees (IACUC) of Stanford University (protocol approval number 30366).
Copyright
© 2019, Tarashansky et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,488
- views
-
- 1,071
- downloads
-
- 57
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.
-
- Computational and Systems Biology
Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study bias affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.