Abstract
Single-cell RNA sequencing has spurred the development of computational methods that enable researchers to classify cell types, delineate developmental trajectories, and measure molecular responses to external perturbations. Many of these technologies rely on their ability to detect genes whose cell-to-cell variations arise from the biological processes of interest rather than transcriptional or technical noise. However, for datasets in which the biologically relevant differences between cells are subtle, identifying these genes is challenging. We present the self-assembling manifold (SAM) algorithm, an iterative soft feature selection strategy to quantify gene relevance and improve dimensionality reduction. We demonstrate its advantages over other state-of-the-art methods with experimental validation in identifying novel stem cell populations of Schistosoma mansoni, a prevalent parasite that infects hundreds of millions of people. Extending our analysis to a total of 56 datasets, we show that SAM is generalizable and consistently outperforms other methods in a variety of biological and quantitative benchmarks.
Article and author information
Author details
Funding
Burroughs Wellcome Fund
- Bo Wang
Arnold and Mabel Beckman Foundation
- Bo Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: In adherence to the Animal Welfare Act and the Public Health Service Policy on Humane Care and Use of Laboratory Animals, all experiments with and care of mice were performed in accordance with protocols approved by the Institutional Animal Care and Use Committees (IACUC) of Stanford University (protocol approval number 30366).
Reviewing Editor
- Alex K Shalek, Broad Institute of MIT and Harvard, United States
Publication history
- Received: June 3, 2019
- Accepted: September 16, 2019
- Accepted Manuscript published: September 16, 2019 (version 1)
- Version of Record published: October 16, 2019 (version 2)
Copyright
© 2019, Tarashansky et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,595
- Page views
-
- 760
- Downloads
-
- 6
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.