An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium

  1. Bicheng He
  2. Marita Buescher
  3. Max Stephen Farnworth
  4. Frederic Strobl
  5. Ernst HK Stelzer
  6. Nikolaus DB Koniszewski
  7. Dominik Muehlen
  8. Gregor Bucher  Is a corresponding author
  1. University of Göttingen, Germany
  2. Goethe Universität, Frankfurt am Main, Germany

Abstract

The genetic control of anterior brain development is highly conserved throughout animals. For instance, a conserved anterior gene regulatory network specifies the ancestral neuroendocrine center of animals and the apical organ of marine organisms. However, its contribution to the brain in non-marine animals has remained elusive. Here, we study the function of the Tc-foxQ2 forkhead transcription factor, a key regulator of the anterior gene regulatory network of insects. We characterized four distinct types of Tc-foxQ2 positive neural progenitor cells based on differential co-expression with Tc-six3/optix, Tc-six4, Tc-chx/vsx, Tc-nkx2.1/scro, Tc-ey, Tc-rx and Tc-fez1. An enhancer trap line built by genome editing marked Tc-foxQ2 positive neurons, which projected through the primary brain commissure and later through a subset of commissural fascicles. Eventually, they contributed to the central complex. Strikingly, in Tc-foxQ2 RNAi knock-down embryos the primary brain commissure did not split and subsequent development of midline brain structures stalled. Our work establishes foxQ2 as a key regulator of brain midline structures, which distinguish the protocerebrum from segmental ganglia. Unexpectedly, our data suggest that the central complex evolved by integrating neural cells from an ancestral anterior neuroendocrine center.

Data availability

All LSM stacks can be downloaded from the figshare repository (https://figshare.com/account/home#/projects/62939). The construct used for generating the enhancer trap is available from AddGene (#124068). The in vivo imaging data is accessible at Zenodo (10.5281/zenodo.2645645 Dataset DS0001 / "left part" of Figure 6 and Supplementary Movie 1; 10.5281/zenodo.2645657 Dataset DS0002; 10.5281/zenodo.2645665 Dataset DS0003 / "right part" of Figure 6 and Supplementary Movie 2)

The following data sets were generated

Article and author information

Author details

  1. Bicheng He

    Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Marita Buescher

    Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Max Stephen Farnworth

    Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2418-3203
  4. Frederic Strobl

    Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ernst HK Stelzer

    Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1545-0736
  6. Nikolaus DB Koniszewski

    Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Dominik Muehlen

    Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Gregor Bucher

    Johann Friedrich Blumenbach Institute of Zoology, GZMB, University of Göttingen, Göttingen, Germany
    For correspondence
    gbucher1@uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4615-6401

Funding

Deutsche Forschungsgemeinschaft (BU1443/10)

  • Gregor Bucher

Chinese Scholarship Council (201406350036)

  • Bicheng He

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,572
    views
  • 220
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bicheng He
  2. Marita Buescher
  3. Max Stephen Farnworth
  4. Frederic Strobl
  5. Ernst HK Stelzer
  6. Nikolaus DB Koniszewski
  7. Dominik Muehlen
  8. Gregor Bucher
(2019)
An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium
eLife 8:e49065.
https://doi.org/10.7554/eLife.49065

Share this article

https://doi.org/10.7554/eLife.49065

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.

    1. Developmental Biology
    2. Neuroscience
    Yuqi Cai, Zhirong Zhao ... Miao He
    Short Report

    Multiple embryonic origins give rise to forebrain oligodendrocytes (OLs), yet controversies and uncertainty exist regarding their differential contributions. We established intersectional and subtractional strategies to genetically fate map OLs produced by medial ganglionic eminence/preoptic area (MGE/POA), lateral/caudal ganglionic eminences (LGE/CGE), and dorsal pallium in the mouse brain. We found that, contrary to the canonical view, LGE/CGE-derived OLs make minimum contributions to the neocortex and corpus callosum, but dominate piriform cortex and anterior commissure. Additionally, MGE/POA-derived OLs, instead of being entirely eliminated, make small but sustained contribution to cortex with a distribution pattern distinctive from those derived from the dorsal origin. Our study provides a revised and more comprehensive view of cortical and white matter OL origins, and established valuable new tools and strategies for future OL studies.