Neuronal TORC1 modulates longevity via AMPK and cell nonautonomous regulation of mitochondrial dynamics in C. elegans

Abstract

Target of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) antagonistically modulate metabolism and aging. However, how they coordinate to determine longevity and if they act via separable mechanisms is unclear. Here, we show that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that TORC1 suppression increases lifespan cell non autonomously via distinct mechanisms from global AMPK activation. Lifespan extension by null mutations in genes encoding raga-1 (RagA) or rsks-1 (S6K) is fully suppressed by neuronal-specific rescues. Loss of RAGA-1 increases lifespan via maintaining mitochondrial fusion. Neuronal RAGA-1 abrogation of raga-1 mutant longevity requires UNC-64/syntaxin, and promotes mitochondrial fission cell nonautonomously. Finally, deleting the mitochondrial fission factor DRP-1 renders the animal refractory to the pro-aging effects of neuronal RAGA-1. Our results highlight a new role for neuronal TORC1 in cell nonautonomous regulation of longevity, and suggest TORC1 in the central nervous system might be targeted to promote healthy aging.

Data availability

Sequencing data have been deposited in GEO under accession code GSE132794

The following data sets were generated

Article and author information

Author details

  1. Yue Zhang

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne Lanjuin

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Suvagata Roy Chowdhury

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meeta Mistry

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carlos G Silva-García

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Heather J Weir

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chia-Lin Lee

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Caroline C Escoubas

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Emina Tabakovic

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. William Mair

    Department of Genetics and Complex Diseases, Harvard T H Chan School of Public Health, Boston, United States
    For correspondence
    wmair@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0661-1342

Funding

National Institute for Aging (1R01AG044346)

  • William Mair

National Institute for Aging (1R01AG059595)

  • William Mair

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,610
    views
  • 897
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yue Zhang
  2. Anne Lanjuin
  3. Suvagata Roy Chowdhury
  4. Meeta Mistry
  5. Carlos G Silva-García
  6. Heather J Weir
  7. Chia-Lin Lee
  8. Caroline C Escoubas
  9. Emina Tabakovic
  10. William Mair
(2019)
Neuronal TORC1 modulates longevity via AMPK and cell nonautonomous regulation of mitochondrial dynamics in C. elegans
eLife 8:e49158.
https://doi.org/10.7554/eLife.49158

Share this article

https://doi.org/10.7554/eLife.49158

Further reading

    1. Genetics and Genomics
    Khanh B Trang, Matthew C Pahl ... Struan FA Grant
    Research Article

    The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18, and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 – an inflammation-responsive gene in nerve nociceptors – was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

    1. Cell Biology
    2. Genetics and Genomics
    Jisun So, Olivia Strobel ... Hyun Cheol Roh
    Tools and Resources

    Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.