1. Developmental Biology
Download icon

Transcriptional Reporters: Watching gene expression in color

  1. Julie H Simpson  Is a corresponding author
  1. University of California, Santa Barbara, United States
  • Cited 0
  • Views 2,944
  • Annotations
Cite this article as: eLife 2019;8:e49414 doi: 10.7554/eLife.49414


A combination of two fluorescent proteins with different half-lives allows gene expression to be followed with improved time resolution.

Main text

Cells are dynamic places and the levels of gene products – RNA molecules and proteins – inside a given cell change over time. Moreover, different types of cells contain different constellations of RNA molecules and proteins. These aspects of cell identity are controlled by gene expression – the process by which genes are transcribed to form messenger RNA (mRNA) molecules, some of which are then translated to produce proteins.

Many techniques are available to study gene expression in cells. Single-cell RNA sequencing provides a global view of the transcriptional profiles of cells (Bates et al., 2019). In fixed tissue samples, in situ hybridization can be used to detect mRNA molecules, while immunohistochemistry techniques involving antibodies can detect proteins. 'Enhancer bashing' methods have been used to identify the regulatory elements that govern when and where particular genes are expressed (Borok et al., 2010). 'Enhancer traps' and 'protein traps' rely on reporters – this is, genes that produce an easily detectable protein – to provide information on the expression of neighboring genes of interest (St Johnston, 2002). 

Fluorescent proteins are widely used as reporters for gene expression. When illuminated with certain wavelengths of light, these proteins emit fluorescent light of a characteristic color that can then be detected. There are also fluorescent proteins that change color over time or when exposed to light of a specific wavelength (Lin and Tsien, 2010). Most cells do not produce their own fluorescent proteins, so DNA constructs containing the sequence for the fluorescent protein have to be introduced. The insertion can happen either at the normal locus of the gene or at a defined landing site. Fluorescent proteins placed under the regulatory sequences of a gene of interest can then be used to report on the expression of that gene.

Previously, relationships between cells could be detected by inducing dividing cells to express one of several fluorescent proteins at specific time-points during development (Lee and Luo, 1999; Cachero and Jefferis, 2011). Now, in eLife, Li He, Norbert Perrimon and colleagues at Harvard Medical School, Chongqing University and Tufts University report how they have combined two fluorescent proteins with different half-lives to make a reporter (which they call a transcriptional timer or TransTimer) that can be used to explore the dynamics of gene expression in fruit flies (He et al., 2019).

A bright, fast-folding version of green fluorescent protein was selected and modified to speed up its translation. First, He et al. optimized protein synthesis by ensuring that the most common triplet codons available in the fly were used to make the protein. Next, sequences were added to make more of the fluorescent protein by increasing translation initiation, increasing transport of mRNA to the cytoplasm, and efficiently poly-adenylating the mRNA so it could be found by the translation machinery (Pfeiffer et al., 2012). Last, they added a sequence to target the protein for degradation in order to ensure a short half-life. This kind of careful protein engineering – with emphasis on temporal precision of the off switch – is similar to that which led to dramatic improvements in the calcium sensors that can report action potentials in neurons (Dana et al., 2019).

In vitro and in vivo tests showed that these modifications resulted in a rapid increase and decrease of the fluorescent signal, with green fluorescence being detected within 10 minutes and disappearing inside of two hours. A slow-folding, stable red fluorescent protein which can be detected after 1.5 hours, and which lasts for more than 20 hours, was added to generate the TransTimer reporter.

Due to the different folding and degradation times of the two proteins in the TransTimer, the onset of the green fluorescence is fast, followed by a more gradual rise in red fluorescence. If a gene is stably expressed, both green and red fluorescence will be detected. On the other hand, if a gene is dynamically expressed, after an initial period during which both colors can be detected, only red fluorescence will be observed. These fluorescent proteins are bright enough that the changes in color can be watched in living tissue, and potentially tracked in experiments involving long-term imaging of developing embryos (Royer et al., 2016).

He et al. demonstrated some of the applications of the TransTimer in the fruit fly. First, they showed that it can be used to detect short bursts of gene expression in fixed tissues (by measuring the proportions of green to red fluorescent proteins), and that it can help identify new genes with dynamic regulation through a TransTimer enhancer trap. Next it was shown that the TransTimer can be used to follow the gene expression history of different cell types. For example, neurons are sequentially produced by neuroblast stem cells, and key genes in this differentiation are transiently expressed. With the TransTimer, cells that currently express a gene will fluoresce both green and red, while cells that have already switched it off will only emit red fluorescence. In tissues like the eye or wing disc, this resulted in a leading edge of green/red cells followed by a wave of red ones.

The TransTimer could also have other applications in flies. First, it could allow the study of gene expression in dynamic processes such as circadian rhythms and metamorphosis. Second, it could provide real-time information about gene expression during cell fate assignments, complementing mRNA sequencing data, which only provides a snapshot of this process (Bates et al., 2019). Finally, the TransTimer's ability to record gene expression history could be used to answer mechanistic questions about the gene expression cascades that establish neuron identity in developing Drosophila brains (Doe, 2017). It should also be possible to adapt the TransTimer for use in other organisms.

The regulation of gene expression is complex and many questions remain. By showing when, where and how much a gene is expressed, reporters such as the TransTimer will be valuable tools in our efforts to better understand this process.


Article and author information

Author details

  1. Julie H Simpson

    Julie H Simpson is in the Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute at the University of California, Santa Barbara, United States

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6793-7100

Publication history

  1. Version of Record published: July 26, 2019 (version 1)


© 2019, Simpson

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 2,944
    Page views
  • 188
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Tom Dierschke et al.
    Research Article Updated

    Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

    1. Cell Biology
    2. Developmental Biology
    Meng Zhu et al.
    Research Article

    Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the 8-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.