Risk factors for asthma among schoolchildren who participated in a case-control study in urban Uganda

  1. Harriet Mpairwe  Is a corresponding author
  2. Milly Namutebi
  3. Gyaviira Nkurunungi
  4. Pius Tumwesige
  5. Irene Nambuya
  6. Mike Mukasa
  7. Caroline Onen
  8. Marble Nnaluwooza
  9. Barbara Apule
  10. Tonny Katongole
  11. Gloria Oduru
  12. Joseph Kahwa
  13. Emily L Webb
  14. Lawrence Lubyayi
  15. Neil Pearce
  16. Alison M Elliott
  1. Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Uganda
  2. London School of Hygiene and Tropical Medicine, United Kingdom

Abstract

Data on asthma aetiology in Africa are scarce. We investigated the risk factors for asthma among schoolchildren (5-17years) in urban Uganda. We conducted a case-control study, among 555 cases and 1,115 controls. Asthma was diagnosed by study clinicians. The main risk factors for asthma were tertiary education for fathers [adjusted OR (95% CI); 2.32 (1.71-3.16)] and mothers [1.85 (1.38-2.48)]; area of residence at birth, with children born in a small town or in the city having an increased asthma risk compared to schoolchildren born in rural areas [2.16 (1.60-2.92)] and [2.79 (1.79-4.35)], respectively; father's and mother's history of asthma; children's own allergic conditions; atopy; and cooking on gas/electricity. In conclusion, asthma was associated with a strong rural-town-city risk gradient, higher parental socio-economic status and urbanicity. This work provides the basis for future studies to identify specific environmental/lifestyle factors responsible for increasing asthma risk among children in urban areas in LMICs.

Data availability

Data is available at https://datacompass.lshtm.ac.uk/1369/

The following data sets were generated
    1. Webb E
    2. Mpairwe H
    (2019) SONA project - Asthma risk factors data
    London School of Hygiene & Tropical Medicine (LSHTM) Data Compass, https://doi.org/10.17037/DATA.00001369.

Article and author information

Author details

  1. Harriet Mpairwe

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    For correspondence
    Harriet.Mpairwe@mrcuganda.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1199-4859
  2. Milly Namutebi

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  3. Gyaviira Nkurunungi

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4062-9105
  4. Pius Tumwesige

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  5. Irene Nambuya

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  6. Mike Mukasa

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  7. Caroline Onen

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  8. Marble Nnaluwooza

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  9. Barbara Apule

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  10. Tonny Katongole

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  11. Gloria Oduru

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  12. Joseph Kahwa

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  13. Emily L Webb

    Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Lawrence Lubyayi

    Immuno-modulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
    Competing interests
    The authors declare that no competing interests exist.
  15. Neil Pearce

    Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Alison M Elliott

    Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (Training fellowship 102512)

  • Harriet Mpairwe

Wellcome (Senior fellowship 095778)

  • Alison M Elliott

European research council (Project grant 668954)

  • Neil Pearce

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Parents or guardians of the children provided written informed consent, and children eight years or older provided written informed assent. This consent was to participate in the study, and to publish anonymous results.The study was approved by the Uganda Virus Research Institute Research and Ethics Committee, and the Uganda National Council for Science and Technology [reference number HS 1707]. The two bodies follow Good Clinical Practice guidelines.

Copyright

© 2019, Mpairwe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,516
    views
  • 210
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harriet Mpairwe
  2. Milly Namutebi
  3. Gyaviira Nkurunungi
  4. Pius Tumwesige
  5. Irene Nambuya
  6. Mike Mukasa
  7. Caroline Onen
  8. Marble Nnaluwooza
  9. Barbara Apule
  10. Tonny Katongole
  11. Gloria Oduru
  12. Joseph Kahwa
  13. Emily L Webb
  14. Lawrence Lubyayi
  15. Neil Pearce
  16. Alison M Elliott
(2019)
Risk factors for asthma among schoolchildren who participated in a case-control study in urban Uganda
eLife 8:e49496.
https://doi.org/10.7554/eLife.49496

Share this article

https://doi.org/10.7554/eLife.49496

Further reading

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Renan Maestri, Benoît Perez-Lamarque ... Hélène Morlon
    Research Article

    Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Chelsea L Hansen, Cécile Viboud, Lone Simonsen
    Research Article

    Cancer is considered a risk factor for COVID-19 mortality, yet several countries have reported that deaths with a primary code of cancer remained within historic levels during the COVID-19 pandemic. Here, we further elucidate the relationship between cancer mortality and COVID-19 on a population level in the US. We compared pandemic-related mortality patterns from underlying and multiple cause (MC) death data for six types of cancer, diabetes, and Alzheimer’s. Any pandemic-related changes in coding practices should be eliminated by study of MC data. Nationally in 2020, MC cancer mortality rose by only 3% over a pre-pandemic baseline, corresponding to ~13,600 excess deaths. Mortality elevation was measurably higher for less deadly cancers (breast, colorectal, and hematological, 2–7%) than cancers with a poor survival rate (lung and pancreatic, 0–1%). In comparison, there was substantial elevation in MC deaths from diabetes (37%) and Alzheimer’s (19%). To understand these differences, we simulated the expected excess mortality for each condition using COVID-19 attack rates, life expectancy, population size, and mean age of individuals living with each condition. We find that the observed mortality differences are primarily explained by differences in life expectancy, with the risk of death from deadly cancers outcompeting the risk of death from COVID-19.