IFI16, a nuclear innate immune DNA sensor, mediates epigenetic silencing of herpesvirus genomes by its association with H3K9 methyltransferases SUV39H1 and GLP

  1. Arunava Roy  Is a corresponding author
  2. Anandita Ghosh
  3. Binod Kumar
  4. Bala Chandran  Is a corresponding author
  1. University of South Florida, United States
  2. Rosalind Franklin University of Medicine and Science, United States

Abstract

IFI16, an innate immune DNA sensor, recognizes the nuclear episomal herpes viral genomes and induces the inflammasome and interferon-β responses. IFI16 also regulates cellular transcription and act as a DNA virus restriction factor. IFI16 knockdown disrupted the latency of Kaposi's sarcoma associated herpesvirus (KSHV) and induced lytic transcripts. However, the mechanism of IFI16's transcription regulation is unknown. Here, we show that IFI16 is in complex with the H3K9 methyltransferase SUV39H1 and GLP and recruits them to the KSHV genome during de novo infection and latency. The resulting depositions of H3K9me2/me3 serve as a docking site for the heterochromatin inducing HP1α protein leading into the IFI16 dependent epigenetic modifications and silencing of KSHV lytic genes. These studies suggest that IFI16's interaction with H3K9MTases is one of the potential mechanisms by which IFI16 regulates transcription and establish an important paradigm of an innate immune sensor's involvement in epigenetic silencing of foreign DNA.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Arunava Roy

    Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
    For correspondence
    arunava@health.usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8486-0539
  2. Anandita Ghosh

    Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Binod Kumar

    Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bala Chandran

    Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, United States
    For correspondence
    chandran@health.usf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5319-8714

Funding

Public Health Institute (CA 180758)

  • Bala Chandran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara L Sawyer, University of Colorado Boulder, United States

Version history

  1. Received: June 19, 2019
  2. Accepted: November 1, 2019
  3. Accepted Manuscript published: November 4, 2019 (version 1)
  4. Version of Record published: November 14, 2019 (version 2)

Copyright

© 2019, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,217
    views
  • 535
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arunava Roy
  2. Anandita Ghosh
  3. Binod Kumar
  4. Bala Chandran
(2019)
IFI16, a nuclear innate immune DNA sensor, mediates epigenetic silencing of herpesvirus genomes by its association with H3K9 methyltransferases SUV39H1 and GLP
eLife 8:e49500.
https://doi.org/10.7554/eLife.49500

Share this article

https://doi.org/10.7554/eLife.49500

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.