1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling

  1. Pim J Huis in 't Veld
  2. Vladimir A Volkov
  3. Isabelle D Stender
  4. Andrea Musacchio  Is a corresponding author
  5. Marileen Dogterom  Is a corresponding author
  1. Max Planck Institute of Molecular Physiology, Germany
  2. Delft University of Technology, Netherlands
Research Article
  • Cited 11
  • Views 1,183
  • Annotations
Cite this article as: eLife 2019;8:e49539 doi: 10.7554/eLife.49539

Abstract

Errorless chromosome segregation requires load-bearing attachments of the plus ends of spindle microtubules to chromosome structures named kinetochores. How these end-on kinetochore attachments are established following initial lateral contacts with the microtubule lattice is poorly understood. Two microtubule-binding complexes, the Ndc80 and Ska complexes, are important for efficient end-on coupling and may function as a unit in this process, but precise conditions for their interaction are unknown. Here, we report that the Ska-Ndc80 interaction is phosphorylation-dependent and does not require microtubules, applied force, or several previously identified functional determinants including the Ndc80-loop and the Ndc80-tail. Both the Ndc80-tail, which we reveal to be essential for microtubule end-tracking, and Ndc80-bound Ska stabilize microtubule ends in a stalled conformation. Modulation of force-coupling efficiency demonstrates that the duration of stalled microtubule disassembly predicts whether a microtubule is stabilized and rescued by the kinetochore, likely reflecting a structural transition of the microtubule end.

Article and author information

Author details

  1. Pim J Huis in 't Veld

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0234-6390
  2. Vladimir A Volkov

    Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5407-3366
  3. Isabelle D Stender

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea Musacchio

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    andrea.musacchio@mpi-dortmund.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2362-8784
  5. Marileen Dogterom

    Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
    For correspondence
    m.dogterom@tudelft.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8803-5261

Funding

European Commission (ERC AdG RECEPIANCE (proposal 669686))

  • Andrea Musacchio

Deutsche Forschungsgemeinschaft (CRC1093)

  • Andrea Musacchio

European Commission (ERC SG MODELCELL (proposal 609822))

  • Marileen Dogterom

European Molecular Biology Organization (STF7203)

  • Pim J Huis in 't Veld

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew D McAinsh, University of Warwick, United Kingdom

Publication history

  1. Received: June 20, 2019
  2. Accepted: November 26, 2019
  3. Accepted Manuscript published: December 5, 2019 (version 1)
  4. Version of Record published: December 23, 2019 (version 2)

Copyright

© 2019, Huis in 't Veld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,183
    Page views
  • 264
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Christopher Icke et al.
    Research Article

    Protein acylation is critical for many cellular functions across all domains of life. In bacteria, lipoproteins have important roles in virulence and are targets for the development of antimicrobials and vaccines. Bacterial lipoproteins are secreted from the cytosol via the Sec pathway and acylated on an N-terminal cysteine residue through the action of three enzymes. In Gram-negative bacteria, the Lol pathway transports lipoproteins to the outer membrane. Here we demonstrate that the Aat secretion system is a composite system sharing similarity with elements of a type I secretion systems and the Lol pathway. During secretion, the AatD subunit acylates the substrate CexE on a highly conserved N-terminal glycine residue. Mutations disrupting glycine acylation interfere with membrane incorporation and trafficking. Our data reveal CexE as the first member of a new class of glycine-acylated lipoprotein, while Aat represents a new secretion system that displays the substrate lipoprotein on the cell surface.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Hélène Duplus-Bottin et al.
    Tools and Resources

    Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light, without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of β-carotene with light, and in human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.