Saccade suppression depends on context

  1. Eckart Zimmermann  Is a corresponding author
  1. University of Düsseldorf, Germany

Abstract

Although our eyes are in constant movement, we remain unaware of the high-speed stimulation produced by the retinal displacement. Vision is drastically reduced at the time of saccades. Here, I investigated whether the reduction of the unwanted disturbance could be established through a saccade-contingent habituation to intra-saccadic displacements. In more than 100 context trials, participants were exposed either to an intra-saccadic or to a post-saccadic disturbance or to no disturbance at all. After induction of a specific context, I measured peri-saccadic suppression. Displacement discrimination thresholds of observers were high after participants were exposed to an intra-saccadic disturbance. However, after exposure to a post-saccadic disturbance or a context without any intra-saccadic stimulation, displacement discrimination improved such that observers were able to see shifts as during fixation. Saccade-contingent habituation might explain why we do not perceive trans-saccadic retinal stimulation during saccades.

Data availability

All measured data have been deposited in OSF under DOI 10.17605/OSF.IO/TZA7F.

The following data sets were generated

Article and author information

Author details

  1. Eckart Zimmermann

    Institute for Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
    For correspondence
    eckart.zimmermann@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1964-2711

Funding

Deutsche Forschungsgemeinschaft (ZI/1456)

  • Eckart Zimmermann

H2020 European Research Council (757184)

  • Eckart Zimmermann

The funders supported the current study.

Ethics

Human subjects: The study was approved by the ethics committee of the Faculty of Mathematics and Natural Sciences of the Heinrich-Heine-University Duesseldorf (ZI01-2019-01). Written informed consent about pseudonymized data collection, storage and publication was obtained prior to each experiment in accordance with the declaration of Helsinki.

Copyright

© 2020, Zimmermann

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,887
    views
  • 237
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eckart Zimmermann
(2020)
Saccade suppression depends on context
eLife 9:e49700.
https://doi.org/10.7554/eLife.49700

Share this article

https://doi.org/10.7554/eLife.49700

Further reading

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.