Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex

  1. Ayse Güven
  2. Nereo Kalebic
  3. Katherine R Long
  4. Marta Florio
  5. Samir Vaid
  6. Holger Brandl
  7. Denise Stenzel
  8. Wieland B Huttner  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Abstract

Neocortex expansion is largely based on the proliferative capacity of basal progenitors (BPs), which is increased by extracellular matrix (ECM) components via integrin signaling. Here we show that the transcription factor Sox9 drives expression of ECM components and that laminin 211 increases BP proliferation in embryonic mouse neocortex. We show that Sox9 is expressed in human and ferret BPs and is required for BP proliferation in embryonic ferret neocortex. Conditional Sox9 expression in the mouse BP lineage, where it normally is not expressed, increases BP proliferation, reduces Tbr2 levels and induces Olig2 expression, indicative of premature gliogenesis. Conditional Sox9 expression also results in cell-non-autonomous stimulation of BP proliferation followed by increased upper-layer neuron production. Our findings demonstrate that Sox9 exerts concerted effects on transcription, BP proliferation, neuron production, and neurogenic vs. gliogenic BP cell fate, suggesting that Sox9 may have contributed to promote neocortical expansion.

Data availability

Sequencing data have been deposited in GEO under accession code GSE134162

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ayse Güven

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Nereo Kalebic

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8445-2906
  3. Katherine R Long

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0660-2486
  4. Marta Florio

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Samir Vaid

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Holger Brandl

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1911-8570
  7. Denise Stenzel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Wieland B Huttner

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    huttner@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4143-7201

Funding

Deutsche Forschungsgemeinschaft (SFB 655,A2)

  • Wieland B Huttner

European Research Council (250197)

  • Wieland B Huttner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments in this study were conducted according to the German animal welfare legislation. All experiments utilizing mice and ferrets were conducted in agreement with the German Animal Welfare Legislation after approval by the Landesdirektion Sachsen (licence TVV 05/2015 and TVV 21/2017).

Human subjects: Human fetal neocortical tissue was provided by the Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Carl Gustav Carus, involving elective pregnancy terminations with informed written maternal consents and approval by the local University Hospital Ethical Committees. Human fetal neocortical tissue was also obtained from Novogenix Laboratories (Torrance, CA).

Copyright

© 2020, Güven et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,527
    views
  • 620
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ayse Güven
  2. Nereo Kalebic
  3. Katherine R Long
  4. Marta Florio
  5. Samir Vaid
  6. Holger Brandl
  7. Denise Stenzel
  8. Wieland B Huttner
(2020)
Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex
eLife 9:e49808.
https://doi.org/10.7554/eLife.49808

Share this article

https://doi.org/10.7554/eLife.49808

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.