Novel genetic loci affecting facial shape variation in humans

  1. Ziyi Xiong
  2. Gabriela Dankova
  3. Laurence J Howe
  4. Myoung Keun Lee
  5. Pirro G Hysi
  6. Markus A de Jong
  7. Gu Zhu
  8. Kaustubh Adhikari
  9. Dan Li
  10. Yi Li
  11. Bo Pan
  12. Eleanor Feingold
  13. Mary L Marazita
  14. John R Shaffer
  15. Kerrie McAloney
  16. Shu-Hua Xu
  17. Li Jin
  18. Sijia Wang
  19. Femke MS de Vrij
  20. Bas Lendemeijer
  21. Stephen Richmond
  22. Alexei Zhurov
  23. Sarah Lewis
  24. Gemma C Sharp
  25. Lavinia Paternoster
  26. Holly Thompson
  27. Rolando Gonzales-Jose
  28. Maria Catira Bortolini
  29. Samuel Canizales-Quinteros
  30. Carla Gallo
  31. Giovanni Poletti
  32. Gabriel Bedoya
  33. Francisco Rothhammer
  34. André G Uitterlinden
  35. M Arfan Ikram
  36. Eppo Wolvius
  37. Steven A Kushner
  38. Tamar EC Nijsten
  39. Robert-Jan TS Palstra
  40. Stefan Boehringer
  41. Sarah E Medland
  42. Kun Tang
  43. Andrés Ruiz-Linares
  44. Nicholas G Martin
  45. Timothy D Spector
  46. Evie Stergiakouli
  47. Seth M Weinberg
  48. Fan Liu  Is a corresponding author
  49. Manfred Kayser  Is a corresponding author
  50. on behalf of the International Visible Trait Genetics (VisiGen) Consortium
  1. Erasmus MC University Medical Center, Netherlands
  2. University of Bristol, United Kingdom
  3. University of Pittsburgh, United States
  4. King's College London, United Kingdom
  5. QIMR Berghofer Medical Research Institute, Australia
  6. University College London, United Kingdom
  7. CAS-MPG Partner Institute for Computational Biology, China
  8. Bejing Institute of Genomics, China
  9. Plastic Surgery Hospital, China
  10. Cardiff University, United Kingdom
  11. Instituto Patagonico de Ciencias Sociales y Humanas, Argentina
  12. Universidade Federal do Rio Grande do Sul, Brazil
  13. UNAM-Instituto Nacional de Medicina Genomica, Mexico
  14. Universidad Peruana Cayetano Heredia, Peru
  15. Universidad de Antioquia, Colombia
  16. Universidad de Tarapaca, Chile
  17. Leiden University Medical Center, Netherlands
  18. Beijing Institute of Genomics, China

Abstract

The human face represents a combined set of highly heritable phenotypes, but knowledge on its genetic architecture remains limited, despite the relevance for various fields. A series of genome-wide association studies on 78 facial shape phenotypes quantified from 3-dimensional facial images of 10,115 Europeans identified 24 genetic loci reaching study-wide suggestive association (p<5x10-8), among which 17 were previously unreported. A follow-up multi-ethnic study in additional 7,917 individuals confirmed 10 loci including 6 unreported ones (padjusted<2.1x10-3). A global map of derived polygenic face scores assembled facial features in major continental groups consistent with anthropological knowledge. Analyses of epigenomic datasets from cranial neural crest cells revealed abundant cis-regulatory activities at the face-associated genetic loci. Luciferase reporter assays in neural crest progenitor cells highlighted enhancer activities of several face-associated DNA variants. These results substantially advance our understanding of the genetic basis underlying human facial variation and provide candidates for future in-vivo functional studies.

Data availability

GWAS meta-analysis summary statistics data of the significantly associated SNPs are provided with the paper in the supplementary file 1. In addition, GWAS meta-analysis summary statistics of all SNPs and all facial phenotypes, including for each SNP the effect allele, non-effect allele and for each phenotype the effect size alligned to the effect allele with standard error and p-value, are made publically available via figshare under https://doi.org/10.6084/m9.figshare.10298396 (updated file). Moreover, after the paper is accepted for publication, we will upload to the EBI GWAS Catalogue the complete summary statistics of all SNPs (same information as on figshare now) into the GWAS Catalogue. We included this information and the website links in the Material and Method section.

Article and author information

Author details

  1. Ziyi Xiong

    Department of Genetic Identification, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriela Dankova

    Department of Genetic Identification, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurence J Howe

    Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Myoung Keun Lee

    Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pirro G Hysi

    Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Markus A de Jong

    Department of Genetic Identification, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Gu Zhu

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Kaustubh Adhikari

    Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5825-4191
  9. Dan Li

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yi Li

    CAS Key Laboratory of Genomic and Precision Medicine, Bejing Institute of Genomics, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Bo Pan

    Department of Auricular Reconstruction, Plastic Surgery Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Eleanor Feingold

    Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Mary L Marazita

    Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2648-2832
  14. John R Shaffer

    Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1897-1131
  15. Kerrie McAloney

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Shu-Hua Xu

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Li Jin

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Sijia Wang

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Femke MS de Vrij

    Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0825-3806
  20. Bas Lendemeijer

    Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Stephen Richmond

    University Dental School, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  22. Alexei Zhurov

    University Dental School, Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  23. Sarah Lewis

    Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  24. Gemma C Sharp

    Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2906-4035
  25. Lavinia Paternoster

    Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  26. Holly Thompson

    Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  27. Rolando Gonzales-Jose

    CENPAT-CONICET, Instituto Patagonico de Ciencias Sociales y Humanas, Puerto Madryn, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  28. Maria Catira Bortolini

    Departamento de Genetica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  29. Samuel Canizales-Quinteros

    Unidad de Genomica de Poblaciones Aplicada a la Salud, UNAM-Instituto Nacional de Medicina Genomica, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  30. Carla Gallo

    Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofıa, Universidad Peruana Cayetano Heredia, Lima, Peru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8348-0473
  31. Giovanni Poletti

    Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofıa, Universidad Peruana Cayetano Heredia, Lima, Peru
    Competing interests
    The authors declare that no competing interests exist.
  32. Gabriel Bedoya

    Genetica Molecular, Universidad de Antioquia, Medellin, Colombia
    Competing interests
    The authors declare that no competing interests exist.
  33. Francisco Rothhammer

    Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
    Competing interests
    The authors declare that no competing interests exist.
  34. André G Uitterlinden

    Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  35. M Arfan Ikram

    Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  36. Eppo Wolvius

    Department of Oral and Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  37. Steven A Kushner

    Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9777-3338
  38. Tamar EC Nijsten

    Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  39. Robert-Jan TS Palstra

    Department of Biochemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  40. Stefan Boehringer

    Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9108-9212
  41. Sarah E Medland

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  42. Kun Tang

    CAS-MPG Partner Institute for Computational Biology, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  43. Andrés Ruiz-Linares

    Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  44. Nicholas G Martin

    QIMR Berghofer Medical Research Institute, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  45. Timothy D Spector

    Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  46. Evie Stergiakouli

    Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  47. Seth M Weinberg

    Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  48. Fan Liu

    CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Bejing, China
    For correspondence
    liufan@big.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  49. Manfred Kayser

    Department of Genetic Identification, Erasmus MC University Medical Center, Rotterdam, Netherlands
    For correspondence
    m.kayser@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4958-847X

Funding

European Union Horizon 2020 Research and Innovation Programme (740580 (VISAGE))

  • Manfred Kayser

Levelhulm Trust (F/07 134/DF)

  • Andrés Ruiz-Linares

National Natural Science Foundation of China (91631307)

  • Sijia Wang

National Natural Science Foundation of China (91731303)

  • Shu-Hua Xu

National Natural Science Foundation of China (30890034)

  • Li Jin

Australian NHMRC

  • Nicholas G Martin

Australian NHMRC Fellowship (APP1103623)

  • Sarah E Medland

National Natural Science Foundation of China (31771388)

  • Shu-Hua Xu

National Natural Science Foundation of China (315014)

  • Shu-Hua Xu

National Natural Science Foundation of China (31711530331)

  • Shu-Hua Xu

National Natural Science Foundation of China (31271338)

  • Li Jin

National Science Foundation of China (91651507)

  • Fan Liu

National Institute of Dental and Craniofacial Research (R01-DE027023)

  • Seth M Weinberg

National Institute of Dental and Craniofacial Research (R01-DE016148)

  • Seth M Weinberg

National Institute of Dental and Craniofacial Research (X01-HG007821)

  • Seth M Weinberg

Netherlands Organization of Scientific Research (911-03-012)

  • M Arfan Ikram

National Key R&D Program of China (2017YFC083501)

  • Fan Liu

Strategic Priority Reserach Program Chinese Academy of Sciences (XDC010400100)

  • Fan Liu

China Scholarship Council (PhD Fellowship)

  • Ziyi Xiong

Netherlands Organization of Scientific Research (1750102005011)

  • M Arfan Ikram

Wellcome Trust

  • Timothy D Spector

Medical Research Council (102215/2/13/2)

  • Evie Stergiakouli

National Institute of Dental and Craniofacial Research (U01-DE20078)

  • Seth M Weinberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All cohort participants gave informed consent and consent to publish. The different cohort studies involved have been approved by their local ethics committees and in part higher institutions such as ministries, as described in the Material and Method section. Protocol numbers can be found for each cohort in the Materials and Methods section.

Copyright

© 2019, Xiong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,750
    views
  • 785
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziyi Xiong
  2. Gabriela Dankova
  3. Laurence J Howe
  4. Myoung Keun Lee
  5. Pirro G Hysi
  6. Markus A de Jong
  7. Gu Zhu
  8. Kaustubh Adhikari
  9. Dan Li
  10. Yi Li
  11. Bo Pan
  12. Eleanor Feingold
  13. Mary L Marazita
  14. John R Shaffer
  15. Kerrie McAloney
  16. Shu-Hua Xu
  17. Li Jin
  18. Sijia Wang
  19. Femke MS de Vrij
  20. Bas Lendemeijer
  21. Stephen Richmond
  22. Alexei Zhurov
  23. Sarah Lewis
  24. Gemma C Sharp
  25. Lavinia Paternoster
  26. Holly Thompson
  27. Rolando Gonzales-Jose
  28. Maria Catira Bortolini
  29. Samuel Canizales-Quinteros
  30. Carla Gallo
  31. Giovanni Poletti
  32. Gabriel Bedoya
  33. Francisco Rothhammer
  34. André G Uitterlinden
  35. M Arfan Ikram
  36. Eppo Wolvius
  37. Steven A Kushner
  38. Tamar EC Nijsten
  39. Robert-Jan TS Palstra
  40. Stefan Boehringer
  41. Sarah E Medland
  42. Kun Tang
  43. Andrés Ruiz-Linares
  44. Nicholas G Martin
  45. Timothy D Spector
  46. Evie Stergiakouli
  47. Seth M Weinberg
  48. Fan Liu
  49. Manfred Kayser
  50. on behalf of the International Visible Trait Genetics (VisiGen) Consortium
(2019)
Novel genetic loci affecting facial shape variation in humans
eLife 8:e49898.
https://doi.org/10.7554/eLife.49898

Share this article

https://doi.org/10.7554/eLife.49898

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Genetics and Genomics
    Shuai Zhang, Ruixue Wang ... Lin Sun
    Research Article

    N6-methyladenosine (m6A) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of m6A components appears in a variety of human diseases. RNA m6A modification in Drosophila has proven to be involved in sex determination regulated by Sxl and may affect X chromosome expression through the MSL complex. The dosage-related effects under the condition of genomic imbalance (i.e. aneuploidy) are related to various epigenetic regulatory mechanisms. Here, we investigated the roles of RNA m6A modification in unbalanced genomes using aneuploid Drosophila. The results showed that the expression of m6A components changed significantly under genomic imbalance, and affected the abundance and genome-wide distribution of m6A, which may be related to the developmental abnormalities of aneuploids. The relationships between methylation status and classical dosage effect, dosage compensation, and inverse dosage effect were also studied. In addition, we demonstrated that RNA m6A methylation may affect dosage-dependent gene regulation through dosage-sensitive modifiers, alternative splicing, the MSL complex, and other processes. More interestingly, there seems to be a close relationship between MSL complex and RNA m6A modification. It is found that ectopically overexpressed MSL complex, especially the levels of H4K16Ac through MOF, could influence the expression levels of m6A modification and genomic imbalance may be involved in this interaction. We found that m6A could affect the levels of H4K16Ac through MOF, a component of the MSL complex, and that genomic imbalance may be involved in this interaction. Altogether, our work reveals the dynamic and regulatory role of RNA m6A modification in unbalanced genomes, and may shed new light on the mechanisms of aneuploidy-related developmental abnormalities and diseases.