Novel genetic loci affecting facial shape variation in humans
Abstract
The human face represents a combined set of highly heritable phenotypes, but knowledge on its genetic architecture remains limited, despite the relevance for various fields. A series of genome-wide association studies on 78 facial shape phenotypes quantified from 3-dimensional facial images of 10,115 Europeans identified 24 genetic loci reaching study-wide suggestive association (p<5x10-8), among which 17 were previously unreported. A follow-up multi-ethnic study in additional 7,917 individuals confirmed 10 loci including 6 unreported ones (padjusted<2.1x10-3). A global map of derived polygenic face scores assembled facial features in major continental groups consistent with anthropological knowledge. Analyses of epigenomic datasets from cranial neural crest cells revealed abundant cis-regulatory activities at the face-associated genetic loci. Luciferase reporter assays in neural crest progenitor cells highlighted enhancer activities of several face-associated DNA variants. These results substantially advance our understanding of the genetic basis underlying human facial variation and provide candidates for future in-vivo functional studies.
Data availability
GWAS meta-analysis summary statistics data of the significantly associated SNPs are provided with the paper in the supplementary file 1. In addition, GWAS meta-analysis summary statistics of all SNPs and all facial phenotypes, including for each SNP the effect allele, non-effect allele and for each phenotype the effect size alligned to the effect allele with standard error and p-value, are made publically available via figshare under https://doi.org/10.6084/m9.figshare.10298396 (updated file). Moreover, after the paper is accepted for publication, we will upload to the EBI GWAS Catalogue the complete summary statistics of all SNPs (same information as on figshare now) into the GWAS Catalogue. We included this information and the website links in the Material and Method section.
Article and author information
Author details
Funding
European Union Horizon 2020 Research and Innovation Programme (740580 (VISAGE))
- Manfred Kayser
Levelhulm Trust (F/07 134/DF)
- Andrés Ruiz-Linares
National Natural Science Foundation of China (91631307)
- Sijia Wang
National Natural Science Foundation of China (91731303)
- Shu-Hua Xu
National Natural Science Foundation of China (30890034)
- Li Jin
Australian NHMRC
- Nicholas G Martin
Australian NHMRC Fellowship (APP1103623)
- Sarah E Medland
National Natural Science Foundation of China (31771388)
- Shu-Hua Xu
National Natural Science Foundation of China (315014)
- Shu-Hua Xu
National Natural Science Foundation of China (31711530331)
- Shu-Hua Xu
National Natural Science Foundation of China (31271338)
- Li Jin
National Science Foundation of China (91651507)
- Fan Liu
National Institute of Dental and Craniofacial Research (R01-DE027023)
- Seth M Weinberg
National Institute of Dental and Craniofacial Research (R01-DE016148)
- Seth M Weinberg
National Institute of Dental and Craniofacial Research (X01-HG007821)
- Seth M Weinberg
Netherlands Organization of Scientific Research (911-03-012)
- M Arfan Ikram
National Key R&D Program of China (2017YFC083501)
- Fan Liu
Strategic Priority Reserach Program Chinese Academy of Sciences (XDC010400100)
- Fan Liu
China Scholarship Council (PhD Fellowship)
- Ziyi Xiong
Netherlands Organization of Scientific Research (1750102005011)
- M Arfan Ikram
Wellcome Trust
- Timothy D Spector
Medical Research Council (102215/2/13/2)
- Evie Stergiakouli
National Institute of Dental and Craniofacial Research (U01-DE20078)
- Seth M Weinberg
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All cohort participants gave informed consent and consent to publish. The different cohort studies involved have been approved by their local ethics committees and in part higher institutions such as ministries, as described in the Material and Method section. Protocol numbers can be found for each cohort in the Materials and Methods section.
Copyright
© 2019, Xiong et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,822
- views
-
- 792
- downloads
-
- 68
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Genetics and Genomics
5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.
-
- Genetics and Genomics
- Microbiology and Infectious Disease
Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.