Interferon-β-induced miR-1 alleviates toxic protein accumulation by controlling autophagy

  1. Camilla Nehammer
  2. Patrick Ejlerskov
  3. Sandeep Gopal
  4. Ava Handley
  5. Leelee Ng
  6. Pedro Moreira
  7. Huikyong Lee
  8. Shohreh Issazadeh-Navikas
  9. David C Rubinsztein
  10. Roger Pocock  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Monash University, Australia
  3. University of Cambridge, United Kingdom

Abstract

Appropriate regulation of autophagy is crucial for clearing toxic proteins from cells. Defective autophagy results in accumulation of toxic protein aggregates that detrimentally affect cellular function and organismal survival. Here, we report that the microRNA miR-1 regulates the autophagy pathway through conserved targeting of the orthologous Tre-2/Bub2/CDC16 (TBC) Rab GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mammalian cells, respectively. Loss of miR-1 causes TBC-7/TBC1D15 overexpression, leading to a block on autophagy. Further, we found that the cytokine interferon-b (IFN-b) can induce miR-1 expression in mammalian cells, reducing TBC1D15 levels, and safeguarding against proteotoxic challenges. Therefore, this work provides a potential therapeutic strategy for protein aggregation disorders.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE128968

The following data sets were generated

Article and author information

Author details

  1. Camilla Nehammer

    Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick Ejlerskov

    Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandeep Gopal

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Ava Handley

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1543-1551
  5. Leelee Ng

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Pedro Moreira

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Huikyong Lee

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Shohreh Issazadeh-Navikas

    Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. David C Rubinsztein

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5002-5263
  10. Roger Pocock

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    For correspondence
    roger.pocock@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5515-3608

Funding

National Health and Medical Research Council (GNT1137645)

  • Roger Pocock

Lundbeckfonden (R223-2016-849)

  • Shohreh Issazadeh-Navikas

Lundbeckfonden (R210-2015-3372)

  • Patrick Ejlerskov

Wellcome (095317/Z/11/Z)

  • David C Rubinsztein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hitoshi Nakatogawa, Tokyo Institute of Technology, Japan

Version history

  1. Received: July 4, 2019
  2. Accepted: December 3, 2019
  3. Accepted Manuscript published: December 4, 2019 (version 1)
  4. Version of Record published: December 16, 2019 (version 2)

Copyright

© 2019, Nehammer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,756
    views
  • 496
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Camilla Nehammer
  2. Patrick Ejlerskov
  3. Sandeep Gopal
  4. Ava Handley
  5. Leelee Ng
  6. Pedro Moreira
  7. Huikyong Lee
  8. Shohreh Issazadeh-Navikas
  9. David C Rubinsztein
  10. Roger Pocock
(2019)
Interferon-β-induced miR-1 alleviates toxic protein accumulation by controlling autophagy
eLife 8:e49930.
https://doi.org/10.7554/eLife.49930

Share this article

https://doi.org/10.7554/eLife.49930

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Marian Brenner, Christoph Zink ... Antje Gohla
    Research Article

    Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5’-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Parthasarathy Sampathkumar, Heekyung Jung ... Yang Li
    Research Article

    Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody–RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.