1. Biochemistry and Chemical Biology
  2. Genetics and Genomics
Download icon

Interferon-β-induced miR-1 alleviates toxic protein accumulation by controlling autophagy

  1. Camilla Nehammer
  2. Patrick Ejlerskov
  3. Sandeep Gopal
  4. Ava Handley
  5. Leelee Ng
  6. Pedro Moreira
  7. Huikyong Lee
  8. Shohreh Issazadeh-Navikas
  9. David C Rubinsztein
  10. Roger Pocock  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Monash University, Australia
  3. University of Cambridge, United Kingdom
Research Article
  • Cited 1
  • Views 1,924
  • Annotations
Cite this article as: eLife 2019;8:e49930 doi: 10.7554/eLife.49930

Abstract

Appropriate regulation of autophagy is crucial for clearing toxic proteins from cells. Defective autophagy results in accumulation of toxic protein aggregates that detrimentally affect cellular function and organismal survival. Here, we report that the microRNA miR-1 regulates the autophagy pathway through conserved targeting of the orthologous Tre-2/Bub2/CDC16 (TBC) Rab GTPase-activating proteins TBC-7 and TBC1D15 in Caenorhabditis elegans and mammalian cells, respectively. Loss of miR-1 causes TBC-7/TBC1D15 overexpression, leading to a block on autophagy. Further, we found that the cytokine interferon-b (IFN-b) can induce miR-1 expression in mammalian cells, reducing TBC1D15 levels, and safeguarding against proteotoxic challenges. Therefore, this work provides a potential therapeutic strategy for protein aggregation disorders.

Article and author information

Author details

  1. Camilla Nehammer

    Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick Ejlerskov

    Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandeep Gopal

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Ava Handley

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1543-1551
  5. Leelee Ng

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Pedro Moreira

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Huikyong Lee

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Shohreh Issazadeh-Navikas

    Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. David C Rubinsztein

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5002-5263
  10. Roger Pocock

    Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
    For correspondence
    roger.pocock@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5515-3608

Funding

National Health and Medical Research Council (GNT1137645)

  • Roger Pocock

Lundbeckfonden (R223-2016-849)

  • Shohreh Issazadeh-Navikas

Lundbeckfonden (R210-2015-3372)

  • Patrick Ejlerskov

Wellcome (095317/Z/11/Z)

  • David C Rubinsztein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hitoshi Nakatogawa, Tokyo Institute of Technology, Japan

Publication history

  1. Received: July 4, 2019
  2. Accepted: December 3, 2019
  3. Accepted Manuscript published: December 4, 2019 (version 1)
  4. Version of Record published: December 16, 2019 (version 2)

Copyright

© 2019, Nehammer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,924
    Page views
  • 378
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Nami Kitajima et al.
    Research Article Updated

    Adenosine 5’ triphosphate (ATP) is a ubiquitous extracellular signaling messenger. Here, we describe a method for in-vivo imaging of extracellular ATP with high spatiotemporal resolution. We prepared a comprehensive set of cysteine-substitution mutants of ATP-binding protein, Bacillus FoF1-ATP synthase ε subunit, labeled with small-molecule fluorophores at the introduced cysteine residue. Screening revealed that the Cy3-labeled glutamine-105 mutant (Q105C-Cy3; designated ATPOS) shows a large fluorescence change in the presence of ATP, with submicromolar affinity, pH-independence, and high selectivity for ATP over ATP metabolites and other nucleotides. To enable in-vivo validation, we introduced BoNT/C-Hc for binding to neuronal plasma membrane and Alexa Fluor 488 for ratiometric measurement. The resulting ATPOS complex binds to neurons in cerebral cortex of living mice, and clearly visualized a concentrically propagating wave of extracellular ATP release in response to electrical stimulation. ATPOS should be useful to probe the extracellular ATP dynamics of diverse biological processes in vivo.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Syafiq Abd Wahab, Dirk Remus
    Research Article Updated

    Eukaryotic replication origins are licensed by the loading of the replicative DNA helicase, Mcm2-7, in inactive double hexameric form around DNA. Subsequent origin activation is under control of multiple protein kinases that either promote or inhibit origin activation, which is important for genome maintenance. Using the reconstituted budding yeast DNA replication system, we find that the flexible N-terminal extension (NTE) of Mcm2 promotes the stable recruitment of Dbf4-dependent kinase (DDK) to Mcm2-7 double hexamers, which in turn promotes DDK phosphorylation of Mcm4 and −6 and subsequent origin activation. Conversely, we demonstrate that the checkpoint kinase, Rad53, inhibits DDK binding to Mcm2-7 double hexamers. Unexpectedly, this function is not dependent on Rad53 kinase activity, suggesting steric inhibition of DDK by activated Rad53. These findings identify critical determinants of the origin activation reaction and uncover a novel mechanism for checkpoint-dependent origin inhibition.