1. Cancer Biology
  2. Computational and Systems Biology
Download icon

A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity

  1. Adam C Palmer
  2. Christopher Chidley
  3. Peter K Sorger  Is a corresponding author
  1. Harvard Medical School, United States
Research Article
  • Cited 6
  • Views 2,318
  • Annotations
Cite this article as: eLife 2019;8:e50036 doi: 10.7554/eLife.50036

Abstract

Curative cancer therapies are uncommon and nearly always involve multi-drug combinations developed by experimentation in humans; unfortunately, the mechanistic basis for the success of such combinations has rarely been investigated in detail, obscuring lessons learned. Here we use isobologram analysis to score pharmacological interaction, and clone tracing and CRISPR screening to measure cross-resistance among the five drugs comprising R‑CHOP, a combination therapy that frequently cures Diffuse Large B-Cell Lymphomas. We find that drugs in R‑CHOP exhibit very low cross-resistance but not synergistic interaction: together they achieve a greater fractional kill according to the null hypothesis for both the Loewe dose-additivity model and the Bliss effect-independence model. These data provide direct evidence for the 50-year old hypothesis that a curative cancer therapy can be constructed on the basis of independently effective drugs having non-overlapping mechanisms of resistance, without synergistic interaction, which has immediate significance for the design of new drug combinations.

Article and author information

Author details

  1. Adam C Palmer

    Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5028-7028
  2. Christopher Chidley

    Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8212-3148
  3. Peter K Sorger

    Laboratory of Systems Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    peter_sorger@hms.harvard.edu
    Competing interests
    Peter K Sorger, is a member of the SAB or Board of Directors of Merrimack Pharmaceuticals, Glencoe Software,Applied Biomath and RareCyte Inc and has equity in these companies. In the last five years the Sorgerlab has received research funding from Novartis and Merck. P.K.S. declares that none of theserelationships are directly or indirectly related to the content of this manuscript.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3364-1838

Funding

National Institutes of Health (P50-GM107618)

  • Adam C Palmer
  • Christopher Chidley
  • Peter K Sorger

National Institutes of Health (U54-CA225088)

  • Adam C Palmer
  • Christopher Chidley
  • Peter K Sorger

National Health and Medical Research Council (1072965)

  • Adam C Palmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Charles L Sawyers, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: July 9, 2019
  2. Accepted: November 18, 2019
  3. Accepted Manuscript published: November 19, 2019 (version 1)
  4. Version of Record published: December 6, 2019 (version 2)

Copyright

© 2019, Palmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,318
    Page views
  • 389
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    Takahisa Maruno et al.
    Research Article Updated

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of ‘cancer stem cells (CSCs)’ in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC, and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.

    1. Cancer Biology
    László Bányai et al.
    Research Article

    A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.