1. Developmental Biology
  2. Evolutionary Biology
Download icon

Developmental variability channels mouse molar evolution

  1. Luke Hayden
  2. Katerina Lochovska
  3. Marie Sémon
  4. Sabrina Renaud
  5. Marie-Laure Delignette-Muller
  6. Maurine Vilcot
  7. Renata Peterkova
  8. Maria Hovorakova  Is a corresponding author
  9. Sophie Pantalacci  Is a corresponding author
  1. ENS de Lyon, France
  2. Charles University, Czech Republic
  3. Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, France
  4. The Czech Academy of Sciences, Czech Republic
Research Article
  • Cited 8
  • Views 1,311
  • Annotations
Cite this article as: eLife 2020;9:e50103 doi: 10.7554/eLife.50103

Abstract

Do developmental systems preferentially produce certain types of variation that orient phenotypic evolution along preferred directions? At different scales, from the intra-population to the interspecific, the murine first upper molar shows repeated anterior elongation. Using a novel quantitative approach to compare the development of two mouse strains with short or long molars, we identified temporal, spatial and functional differences in tooth signaling center activity, that arise from differential tuning of the activation-inhibition mechanisms underlying tooth patterning. By tracing their fate, we could explain why only the upper first molar reacts via elongation of its anterior part. Despite a lack of genetic variation, individuals of the elongated strain varied in tooth length and the temporal dynamics of their signaling centers, highlighting the intrinsic instability of the upper molar developmental system. Collectively, these results reveal the variational properties of murine molar development that drive morphological evolution along a line of least resistance.

Data availability

- Sequencing data have been deposited in GEO under accession codes GSE135432.- All data generated or analyzed during this study are included in the manuscript and supporting files. Sources and codes are available on githubhttps://github.com/msemon/cdpchttps://github.com/luke-hayden/dvpap/devstatehttps://github.com/luke-hayden/dvpap/devmorph

The following data sets were generated

Article and author information

Author details

  1. Luke Hayden

    Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Katerina Lochovska

    1st Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4142-4531
  3. Marie Sémon

    Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3479-7524
  4. Sabrina Renaud

    Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8730-3113
  5. Marie-Laure Delignette-Muller

    Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Maurine Vilcot

    Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Renata Peterkova

    Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Hovorakova

    Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
    For correspondence
    maria.hovorakova@iem.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
  9. Sophie Pantalacci

    Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
    For correspondence
    sophie.pantalacci@ens-lyon.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0771-8985

Funding

Agence Nationale de la Recherche (ANR-11-BSV7-008)

  • Sophie Pantalacci

Agence Nationale de la Recherche (ANR-11-BSV7-008)

  • Sabrina Renaud

Fondation pour la Recherche Médicale (SPF20140129165)

  • Luke Hayden

Grant Agency of the Czech Republic (14-37368G)

  • Renata Peterkova

Czech Ministry of Education, Youth and Sports (8J19FR032)

  • Maria Hovorakova

Grant Agency of the Czech Republic (18-04859S)

  • Maria Hovorakova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in a strict accordance with European guidelines (2010/63/UE). It was approved by the CECCAPP Animal Experimentation Ethics Committee (Lyon, France; reference ENS_2014_022), by the Professional committee for guarantee of good life-conditions of experimental animals at the Institute of Experimental Medicine IEM CAS, Prague, Czech Republic) and by the Expert Committee at the Czech Academy of Sciences (permit number: 027/ 2011).

Reviewing Editor

  1. Karen E Sears, University of California, Los Angeles, United States

Publication history

  1. Received: July 11, 2019
  2. Accepted: February 2, 2020
  3. Accepted Manuscript published: February 12, 2020 (version 1)
  4. Version of Record published: April 24, 2020 (version 2)

Copyright

© 2020, Hayden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,311
    Page views
  • 229
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Maia Kinnebrew et al.
    Research Advance Updated

    A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. Using a new imaging-based assay to directly measure the transport activity of PTCH1, we find that PTCH1 depletes accessible cholesterol from the outer leaflet of the plasma membrane. This transport activity is terminated by binding of Hedgehog ligands to PTCH1 or by dissipation of the transmembrane potassium gradient. These results point to the unexpected model that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export in the opposite direction. Our study provides a plausible solution for how PTCH1 inhibits SMO by changing the organization of cholesterol in membranes and establishes a general framework for studying how proteins change cholesterol accessibility to regulate membrane-dependent processes in cells.

    1. Developmental Biology
    2. Neuroscience
    David Sokolov et al.
    Research Article

    Despite mounting evidence that the mammalian retina is exceptionally reliant on proper NAD+ homeostasis for health and function, the specific roles of subcellular NAD+ pools in retinal development, maintenance, and disease remain obscure. Here, we show that deletion of the nuclear-localized NAD+ synthase nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) in the developing murine retina causes early and severe degeneration of photoreceptors and select inner retinal neurons via multiple distinct cell death pathways. This severe phenotype is associated with disruptions to retinal central carbon metabolism, purine nucleotide synthesis, and amino acid pathways. Furthermore, transcriptomic and immunostaining approaches reveal dysregulation of a collection of photoreceptor and synapse-specific genes in NMNAT1 knockout retinas prior to detectable morphological or metabolic alterations. Collectively, our study reveals previously unrecognized complexity in NMNAT1-associated retinal degeneration and suggests a yet-undescribed role for NMNAT1 in gene regulation during photoreceptor terminal differentiation.