Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury

  1. Matthew Grove
  2. Hyunkyoung Lee
  3. Huaqing Zhao
  4. Young-Jin Son  Is a corresponding author
  1. Temple University, United States

Abstract

Previously we showed that YAP/TAZ promote not only proliferation but also differentiation of immature Schwann cells (SCs), thereby forming and maintaining the myelin sheath around peripheral axons (Grove et al., 2017). Here we show that YAP/TAZ are required for mature SCs to restore peripheral myelination, but not to proliferate, after nerve injury. We find that YAP/TAZ dramatically disappear from SCs of adult mice concurrent with axon degeneration after nerve injury. They reappear in SCs only if axons regenerate. YAP/TAZ ablation does not impair SC proliferation or transdifferentiation into growth promoting repair SCs. SCs lacking YAP/TAZ, however, fail to upregulate myelin-associated genes and completely fail to remyelinate regenerated axons. We also show that both YAP and TAZ are redundantly required for optimal remyelination. These findings suggest that axons regulate transcriptional activity of YAP/TAZ in adult SCs and that YAP/TAZ are essential for functional regeneration of peripheral nerve.

Data availability

All data generated during this study are included in the manuscript.

Article and author information

Author details

  1. Matthew Grove

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyunkyoung Lee

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huaqing Zhao

    Department of Clinical Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Young-Jin Son

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    For correspondence
    yson@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775

Funding

National Institute of Neurological Disorders and Stroke (NS105796)

  • Young-Jin Son

Shriners Hospitals for Children (Research award)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical procedures and animal maintenance complied with the National Institute of Health guidelines regarding the care and use of experimental animals and were approved by the Institutional Animal Care and Use Committee of Temple University, Philadelphia, PA, USA. Protocol 4920

Copyright

© 2020, Grove et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Grove
  2. Hyunkyoung Lee
  3. Huaqing Zhao
  4. Young-Jin Son
(2020)
Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury
eLife 9:e50138.
https://doi.org/10.7554/eLife.50138

Share this article

https://doi.org/10.7554/eLife.50138

Further reading

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.