Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury

  1. Matthew Grove
  2. Hyunkyoung Lee
  3. Huaqing Zhao
  4. Young-Jin Son  Is a corresponding author
  1. Temple University, United States

Abstract

Previously we showed that YAP/TAZ promote not only proliferation but also differentiation of immature Schwann cells (SCs), thereby forming and maintaining the myelin sheath around peripheral axons (Grove et al., 2017). Here we show that YAP/TAZ are required for mature SCs to restore peripheral myelination, but not to proliferate, after nerve injury. We find that YAP/TAZ dramatically disappear from SCs of adult mice concurrent with axon degeneration after nerve injury. They reappear in SCs only if axons regenerate. YAP/TAZ ablation does not impair SC proliferation or transdifferentiation into growth promoting repair SCs. SCs lacking YAP/TAZ, however, fail to upregulate myelin-associated genes and completely fail to remyelinate regenerated axons. We also show that both YAP and TAZ are redundantly required for optimal remyelination. These findings suggest that axons regulate transcriptional activity of YAP/TAZ in adult SCs and that YAP/TAZ are essential for functional regeneration of peripheral nerve.

Data availability

All data generated during this study are included in the manuscript.

Article and author information

Author details

  1. Matthew Grove

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyunkyoung Lee

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huaqing Zhao

    Department of Clinical Sciences, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Young-Jin Son

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    For correspondence
    yson@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775

Funding

National Institute of Neurological Disorders and Stroke (NS105796)

  • Young-Jin Son

Shriners Hospitals for Children (Research award)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All surgical procedures and animal maintenance complied with the National Institute of Health guidelines regarding the care and use of experimental animals and were approved by the Institutional Animal Care and Use Committee of Temple University, Philadelphia, PA, USA. Protocol 4920

Copyright

© 2020, Grove et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,807
    views
  • 315
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew Grove
  2. Hyunkyoung Lee
  3. Huaqing Zhao
  4. Young-Jin Son
(2020)
Axon-dependent expression of YAP/TAZ mediates Schwann cell remyelination but not proliferation after nerve injury
eLife 9:e50138.
https://doi.org/10.7554/eLife.50138

Share this article

https://doi.org/10.7554/eLife.50138

Further reading

    1. Neuroscience
    Yuan Gao, Yong-Chun Cai ... Xue Mei Song
    Research Article

    The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.

    1. Neuroscience
    Morgan Fitzgerald, Eena Kosik, Bradley Voytek
    Insight

    Changes in neural activity thought to reflect brain aging may be partly influenced by age-dependent signals ‘leaking’ from the heart.