Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC

  1. Hao Zeng  Is a corresponding author
  2. Johnny Castillo-Cabrera
  3. Mika Manser
  4. Bo Lu
  5. Zinger Yang
  6. Vaik Strande
  7. Damien Begue
  8. Raffaella Zamponi
  9. Shumei Qiu
  10. Frederic Sigoillot
  11. Qiong Wang
  12. Alicia Lindeman
  13. John S Reece-Hoyes
  14. Carsten Russ
  15. Debora Bonenfant
  16. Xiaomo Jiang
  17. Youzhen Wang
  18. Feng Cong  Is a corresponding author
  1. Novartis Institutes for BioMedical Research, United States
  2. Novartis Institutes for BioMedical Research, Switzerland

Abstract

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014198. CRISPR-Cas9 screen data were summarized in Supplementary File 1 and Supplementary File 2.

The following data sets were generated

Article and author information

Author details

  1. Hao Zeng

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    hao-1.zeng@novartis.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4967-9555
  2. Johnny Castillo-Cabrera

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mika Manser

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Lu

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zinger Yang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8543-4841
  6. Vaik Strande

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Damien Begue

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Raffaella Zamponi

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shumei Qiu

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Frederic Sigoillot

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Qiong Wang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Alicia Lindeman

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John S Reece-Hoyes

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Carsten Russ

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Debora Bonenfant

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Xiaomo Jiang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Youzhen Wang

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Feng Cong

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    feng.cong@novartis.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Ethics

Animal experimentation: All animal work was performed in accordance with Novartis Animal Care and Use Committee (ACUC) regulations and guidelines (reference number 120137). All animals were allowed to acclimate in the Novartis animal facility with access to food and water ad libitum for 3 days prior to manipulation. All cell lines were confirmed as mycoplasma- and rodent pathogens-negative (IMPACT VIII PCR Profile, IDEXX) before implantation.

Reviewing Editor

  1. William C. Hahn, Dana-Farber Cancer Institue, United States

Publication history

  1. Received: July 16, 2019
  2. Accepted: November 4, 2019
  3. Accepted Manuscript published: November 19, 2019 (version 1)
  4. Version of Record published: December 23, 2019 (version 2)

Copyright

© 2019, Zeng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,910
    Page views
  • 1,058
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hao Zeng
  2. Johnny Castillo-Cabrera
  3. Mika Manser
  4. Bo Lu
  5. Zinger Yang
  6. Vaik Strande
  7. Damien Begue
  8. Raffaella Zamponi
  9. Shumei Qiu
  10. Frederic Sigoillot
  11. Qiong Wang
  12. Alicia Lindeman
  13. John S Reece-Hoyes
  14. Carsten Russ
  15. Debora Bonenfant
  16. Xiaomo Jiang
  17. Youzhen Wang
  18. Feng Cong
(2019)
Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC
eLife 8:e50223.
https://doi.org/10.7554/eLife.50223

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Matthew Roberts, Julia Ogden ... Carlos Lopez-Garcia
    Tools and Resources Updated

    Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-group comparisons, interrogation of genes of interests, and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Mark Borris D Aldonza, Junghwa Cha ... Yoosik Kim
    Research Article

    Cancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post- translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In cancer cell cultures, xenograft mouse models, and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycoproteomes identified fucosylation of the antioxidant PON1 as a critical component of the therapy-induced secretome (TIS). N-glycosylation of TIS and target core fucosylation of PON1 are mediated by the fucose salvage-FUT8-SLC35C1 axis with PON3 directly modulating GDP-Fuc transfer on PON1 scaffolds. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Global and PON1-specific secretome de-N-glycosylation both limited the expansion of resistant clones in a tumor regression model. We defined the resistance-associated transcription factors (TFs) and genes modulated by the N-glycosylated TIS via a focused and transcriptome-wide analyses. These genes characterize the oxidative stress, inflammatory niche, and unfolded protein response as important factors for this modulation. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.