Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC

Abstract

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014198. CRISPR-Cas9 screen data were summarized in Supplementary File 1 and Supplementary File 2.

The following data sets were generated

Article and author information

Author details

  1. Hao Zeng

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    hao-1.zeng@novartis.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4967-9555
  2. Johnny Castillo-Cabrera

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mika Manser

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Lu

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zinger Yang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8543-4841
  6. Vaik Strande

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Damien Begue

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Raffaella Zamponi

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shumei Qiu

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Frederic Sigoillot

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Qiong Wang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Alicia Lindeman

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John S Reece-Hoyes

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Carsten Russ

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Debora Bonenfant

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Xiaomo Jiang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Youzhen Wang

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Feng Cong

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    feng.cong@novartis.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Ethics

Animal experimentation: All animal work was performed in accordance with Novartis Animal Care and Use Committee (ACUC) regulations and guidelines (reference number 120137). All animals were allowed to acclimate in the Novartis animal facility with access to food and water ad libitum for 3 days prior to manipulation. All cell lines were confirmed as mycoplasma- and rodent pathogens-negative (IMPACT VIII PCR Profile, IDEXX) before implantation.

Copyright

© 2019, Zeng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,538
    views
  • 1,247
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hao Zeng
  2. Johnny Castillo-Cabrera
  3. Mika Manser
  4. Bo Lu
  5. Zinger Yang
  6. Vaik Strande
  7. Damien Begue
  8. Raffaella Zamponi
  9. Shumei Qiu
  10. Frederic Sigoillot
  11. Qiong Wang
  12. Alicia Lindeman
  13. John S Reece-Hoyes
  14. Carsten Russ
  15. Debora Bonenfant
  16. Xiaomo Jiang
  17. Youzhen Wang
  18. Feng Cong
(2019)
Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC
eLife 8:e50223.
https://doi.org/10.7554/eLife.50223

Share this article

https://doi.org/10.7554/eLife.50223

Further reading

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.