Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC

Abstract

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014198. CRISPR-Cas9 screen data were summarized in Supplementary File 1 and Supplementary File 2.

The following data sets were generated

Article and author information

Author details

  1. Hao Zeng

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    hao-1.zeng@novartis.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4967-9555
  2. Johnny Castillo-Cabrera

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mika Manser

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Lu

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zinger Yang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8543-4841
  6. Vaik Strande

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Damien Begue

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Raffaella Zamponi

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shumei Qiu

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Frederic Sigoillot

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Qiong Wang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Alicia Lindeman

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John S Reece-Hoyes

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Carsten Russ

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Debora Bonenfant

    Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  16. Xiaomo Jiang

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Youzhen Wang

    Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Feng Cong

    Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    feng.cong@novartis.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Ethics

Animal experimentation: All animal work was performed in accordance with Novartis Animal Care and Use Committee (ACUC) regulations and guidelines (reference number 120137). All animals were allowed to acclimate in the Novartis animal facility with access to food and water ad libitum for 3 days prior to manipulation. All cell lines were confirmed as mycoplasma- and rodent pathogens-negative (IMPACT VIII PCR Profile, IDEXX) before implantation.

Copyright

© 2019, Zeng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,220
    views
  • 1,203
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hao Zeng
  2. Johnny Castillo-Cabrera
  3. Mika Manser
  4. Bo Lu
  5. Zinger Yang
  6. Vaik Strande
  7. Damien Begue
  8. Raffaella Zamponi
  9. Shumei Qiu
  10. Frederic Sigoillot
  11. Qiong Wang
  12. Alicia Lindeman
  13. John S Reece-Hoyes
  14. Carsten Russ
  15. Debora Bonenfant
  16. Xiaomo Jiang
  17. Youzhen Wang
  18. Feng Cong
(2019)
Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC
eLife 8:e50223.
https://doi.org/10.7554/eLife.50223

Share this article

https://doi.org/10.7554/eLife.50223

Further reading

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Gabriella O Estevam, Edmond M Linossi ... James S Fraser
    Research Article

    MET is a receptor tyrosine kinase (RTK) responsible for initiating signaling pathways involved in development and wound repair. MET activation relies on ligand binding to the extracellular receptor, which prompts dimerization, intracellular phosphorylation, and recruitment of associated signaling proteins. Mutations, which are predominantly observed clinically in the intracellular juxtamembrane and kinase domains, can disrupt typical MET regulatory mechanisms. Understanding how juxtamembrane variants, such as exon 14 skipping (METΔEx14), and rare kinase domain mutations can increase signaling, often leading to cancer, remains a challenge. Here, we perform a parallel deep mutational scan (DMS) of the MET intracellular kinase domain in two fusion protein backgrounds: wild-type and METΔEx14. Our comparative approach has revealed a critical hydrophobic interaction between a juxtamembrane segment and the kinase ⍺C-helix, pointing to potential differences in regulatory mechanisms between MET and other RTKs. Additionally, we have uncovered a β5 motif that acts as a structural pivot for the kinase domain in MET and other TAM family of kinases. We also describe a number of previously unknown activating mutations, aiding the effort to annotate driver, passenger, and drug resistance mutations in the MET kinase domain.

    1. Cancer Biology
    Ruijing Tang, Luobin Guo ... Xiaolong Liu
    Research Article

    Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.