CNApp, a tool for the quantification of copy number alterations and integrative analysis revealing clinical implications
Abstract
Somatic copy number alterations (CNAs) are a hallmark of cancer, but their role in tumorigenesis and clinical relevance remain largely unclear. Here we developed CNApp, a web-based tool that allows a comprehensive exploration of CNAs by using purity-corrected segmented data from multiple genomic platforms. CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to the TCGA pan-cancer dataset of 10,635 genomes showing that CNAs classify cancer types according to their tissue-of-origin, and that each cancer type shows specific ranges of broad and focal CNA scores. Moreover, CNApp reproduces recurrent CNAs in hepatocellular carcinoma, and predicts colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and discrete genomic imbalances. In summary, CNApp facilitates CNA-driven research by providing a unique framework to identify relevant clinical implications. CNApp is hosted at https://tools.idibaps.org/CNApp/.
Data availability
Data and plots presented in the submission were generated by using our CNApp tool. Source code and additional files can be found at GitHub (https://github.com/ait5/CNApp).
Article and author information
Author details
Funding
CIBEREHD
- Sebastià Franch-Expósito
Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (GCB13131592CAST)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
European Commission /Horizon 2020 Program (HEPCAR Ref. 667273-2)
- Josep Maria Llovet
U.S. Department of Defense (CA150272P3)
- Josep Maria Llovet
National Cancer Institute (P30-CA196521)
- Josep Maria Llovet
Samuel Waxman Cancer Research Foundation
- Josep Maria Llovet
Spanish National Health Institute (SAF2016-76390)
- Josep Maria Llovet
Generalitat de Catalunya/AGAUR (SGR-1162)
- Josep Maria Llovet
Generalitat de Catalunya/AGAUR (SGR-1358)
- Josep Maria Llovet
European Regional Development Fund (PI14/00783)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
European Regional Development Fund (PI17/01304)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (AGAUR 2016BP00161)
- Laia Bassaganyas
European Regional Development Fund (PI17/00878)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (2017 SGR 21)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (2017 SGR 653)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (AGAUR 2018FI B1_00213)
- Marcos Díaz-Gay
Spanish National Health Institute (FPI BES-2017-081286)
- Roger Esteban-Fabró
European Comission (PCIG11-GA-2012-321937)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
European Regional Development Fund (CP13/00160)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
CERCA Program
- Juan José Lozano
- Antoni Castells
- Josep Maria Llovet
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (2017 SGR 1035)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
PERIS Generalitat de Catalunya (SLT002/16/00398)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Franch-Expósito et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 9,724
- views
-
- 495
- downloads
-
- 50
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
-
- Cancer Biology
- Computational and Systems Biology
Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.