CNApp, a tool for the quantification of copy number alterations and integrative analysis revealing clinical implications
Abstract
Somatic copy number alterations (CNAs) are a hallmark of cancer, but their role in tumorigenesis and clinical relevance remain largely unclear. Here we developed CNApp, a web-based tool that allows a comprehensive exploration of CNAs by using purity-corrected segmented data from multiple genomic platforms. CNApp generates genome-wide profiles, computes CNA scores for broad, focal and global CNA burdens, and uses machine learning-based predictions to classify samples. We applied CNApp to the TCGA pan-cancer dataset of 10,635 genomes showing that CNAs classify cancer types according to their tissue-of-origin, and that each cancer type shows specific ranges of broad and focal CNA scores. Moreover, CNApp reproduces recurrent CNAs in hepatocellular carcinoma, and predicts colon cancer molecular subtypes and microsatellite instability based on broad CNA scores and discrete genomic imbalances. In summary, CNApp facilitates CNA-driven research by providing a unique framework to identify relevant clinical implications. CNApp is hosted at https://tools.idibaps.org/CNApp/.
Data availability
Data and plots presented in the submission were generated by using our CNApp tool. Source code and additional files can be found at GitHub (https://github.com/ait5/CNApp).
Article and author information
Author details
Funding
CIBEREHD
- Sebastià Franch-Expósito
Fundacion Cientifica de la Asociacion Espanola Contra el Cancer (GCB13131592CAST)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
European Commission /Horizon 2020 Program (HEPCAR Ref. 667273-2)
- Josep Maria Llovet
U.S. Department of Defense (CA150272P3)
- Josep Maria Llovet
National Cancer Institute (P30-CA196521)
- Josep Maria Llovet
Samuel Waxman Cancer Research Foundation
- Josep Maria Llovet
Spanish National Health Institute (SAF2016-76390)
- Josep Maria Llovet
Generalitat de Catalunya/AGAUR (SGR-1162)
- Josep Maria Llovet
Generalitat de Catalunya/AGAUR (SGR-1358)
- Josep Maria Llovet
European Regional Development Fund (PI14/00783)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
European Regional Development Fund (PI17/01304)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (AGAUR 2016BP00161)
- Laia Bassaganyas
European Regional Development Fund (PI17/00878)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (2017 SGR 21)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (2017 SGR 653)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (AGAUR 2018FI B1_00213)
- Marcos Díaz-Gay
Spanish National Health Institute (FPI BES-2017-081286)
- Roger Esteban-Fabró
European Comission (PCIG11-GA-2012-321937)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
European Regional Development Fund (CP13/00160)
- Marcos Díaz-Gay
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
CERCA Program
- Juan José Lozano
- Antoni Castells
- Josep Maria Llovet
- Sergi Castellvi-Bel
- Jordi Camps
Generalitat de Catalunya (2017 SGR 1035)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
PERIS Generalitat de Catalunya (SLT002/16/00398)
- Juan José Lozano
- Antoni Castells
- Sergi Castellvi-Bel
- Jordi Camps
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- C Daniela Robles-Espinoza, International Laboratory for Human Genome Research, Mexico
Publication history
- Received: July 17, 2019
- Accepted: January 14, 2020
- Accepted Manuscript published: January 15, 2020 (version 1)
- Version of Record published: February 10, 2020 (version 2)
Copyright
© 2020, Franch-Expósito et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,487
- Page views
-
- 329
- Downloads
-
- 13
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Computational and Systems Biology
Late advances in genome sequencing expanded the space of known cancer driver genes several-fold. However, most of this surge was based on computational analysis of somatic mutation frequencies and/or their impact on the protein function. On the contrary, experimental research necessarily accounted for functional context of mutations interacting with other genes and conferring cancer phenotypes. Eventually, just such results become 'hard currency' of cancer biology. The new method, NEAdriver employs knowledge accumulated thus far in the form of global interaction network and functionally annotated pathways in order to recover known and predict novel driver genes. The driver discovery was individualized by accounting for mutations' co-occurrence in each tumour genome - as an alternative to summarizing information over the whole cancer patient cohorts. For each somatic genome change, probabilistic estimates from two lanes of network analysis were combined into joint likelihoods of being a driver. Thus, ability to detect previously unnoticed candidate driver events emerged from combining individual genomic context with network perspective. The procedure was applied to ten largest cancer cohorts followed by evaluating error rates against previous cancer gene sets. The discovered driver combinations were shown to be informative on cancer outcome. This revealed driver genes with individually sparse mutation patterns that would not be detectable by other computational methods and related to cancer biology domains poorly covered by previous analyses. In particular, recurrent mutations of collagen, laminin, and integrin genes were observed in the adenocarcinoma and glioblastoma cancers. Considering constellation patterns of candidate drivers in individual cancer genomes opens a novel avenue for personalized cancer medicine.
-
- Computational and Systems Biology
- Evolutionary Biology
Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design – instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.