Common activation mechanism of class A GPCRs
Abstract
Class A G protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. Understanding receptor activation mechanism is critical for discovering novel therapeutics since about one-third of all marketed drugs target members of this family. GPCR activation is an allosteric process that couples agonist binding to G protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue level changes of this movement remain less well understood. Here, we report a framework to quantify conformational changes. By analyzing the conformational changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY, Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with G protein coupling region. Site-directed mutagenesis experiments support this proposition and reveal that rational mutations of residues in this pathway can be used to obtain receptors that are constitutively active or inactive. The common activation pathway provides the mechanistic interpretation of constitutively activating, inactivating and disease mutations. As a module responsible for activation, the common pathway allows for decoupling of the evolution of the ligand binding site and G protein binding region. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 6 and 7.
Article and author information
Author details
Funding
Medical Research Council (MC_U105185859)
- M Madan Babu
National Mega R&D Program for Drug Discovery (2018ZX09735-001)
- Ming-Wei Wang
National Key R&D Program of China (2016YFC0905900)
- Suwen Zhao
National Key R&D Program of China (2018YFA0507000)
- Suwen Zhao
National Key R&D Program of China (2018YFA0507000)
- Ming-Wei Wang
National Natural Science Foundation of China (31971178)
- Suwen Zhao
National Natural Science Foundation of China (81872915)
- Ming-Wei Wang
Novo Nordisk-CAS Research (NNCAS-2017-1-CC)
- Dehua Yang
Young Talent Program of Shanghai
- Suwen Zhao
Shanghai Science and Technology Development Fund (16ZR1448500)
- Suwen Zhao
Shanghai Science and Technology Development Fund (16ZR1407100)
- Antao Dai
National Natural Science Foundation of China (21704064)
- Qingtong Zhou
National Natural Science Foundation of China (81573479)
- Dehua Yang
National Natural Science Foundation of China (81773792)
- Dehua Yang
National Mega R&D Program for Drug Discovery (2018ZX09711002-002-005)
- Dehua Yang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Yibing Shan, DE Shaw Research, United States
Publication history
- Received: July 17, 2019
- Accepted: December 19, 2019
- Accepted Manuscript published: December 19, 2019 (version 1)
- Version of Record published: January 10, 2020 (version 2)
- Version of Record updated: February 25, 2020 (version 3)
Copyright
© 2019, Zhou et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 19,917
- Page views
-
- 3,071
- Downloads
-
- 199
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Computational and Systems Biology
Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in Caenorhabditis elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single-molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.
-
- Computational and Systems Biology
- Neuroscience
Brains are not engineered solutions to a well-defined problem but arose through selective pressure acting on random variation. It is therefore unclear how well a model chosen by an experimenter can relate neural activity to experimental conditions. Here we developed 'Model identification of neural encoding (MINE)'. MINE is an accessible framework using convolutional neural networks (CNN) to discover and characterize a model that relates aspects of tasks to neural activity. Although flexible, CNNs are difficult to interpret. We use Taylor decomposition approaches to understand the discovered model and how it maps task features to activity. We apply MINE to a published cortical dataset as well as experiments designed to probe thermoregulatory circuits in zebrafish. MINE allowed us to characterize neurons according to their receptive field and computational complexity, features which anatomically segregate in the brain. We also identified a new class of neurons that integrate thermosensory and behavioral information which eluded us previously when using traditional clustering and regression-based approaches.