Receptor-based mechanism of relative sensing and cell memory in mammalian signaling networks

  1. Eugenia Lyashenko
  2. Mario Niepel
  3. Purushottam D Dixit
  4. Sang Kyun Lim
  5. Peter K Sorger
  6. Dennis Vitkup  Is a corresponding author
  1. Columbia University, United States
  2. Harvard Medical School, United States

Abstract

Detecting relative rather than absolute changes in extracellular signals enables cells to make decisions in fluctuating environments. However, how mammalian signaling networks store the memories of past stimuli and subsequently use them to compute relative signals, i.e. perform fold change detection, is not well understood. Using the growth factor-activated PI3K-Akt signaling pathway, we develop computational and analytical models, and experimentally validate a novel mechanism of relative sensing in mammalian cells. This mechanism relies on a new form of cellular memory, where cells effectively encode past stimulation levels in the abundance of cognate receptors on the cell surface. We show the robustness and specificity of the relative sensing for two physiologically important ligands, epidermal growth factor (EGF) and hepatocyte growth factor (HGF), and across wide ranges of background stimuli. Our results suggest that similar mechanisms of memory and fold change detection are likely to be important across diverse signaling cascades and biological contexts.

Data availability

All data used in this study and the code used for simulations is available at https://github.com/dixitpd/FoldChange

Article and author information

Author details

  1. Eugenia Lyashenko

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mario Niepel

    HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1415-6295
  3. Purushottam D Dixit

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sang Kyun Lim

    HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter K Sorger

    HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3364-1838
  6. Dennis Vitkup

    Department of Systems Biology, Columbia University, New York, United States
    For correspondence
    dv2121@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4259-8162

Funding

National Institutes of Health (R01CA201276)

  • Eugenia Lyashenko
  • Purushottam D Dixit
  • Dennis Vitkup

National Institutes of Health (U54CA209997)

  • Eugenia Lyashenko
  • Purushottam D Dixit
  • Dennis Vitkup

National Institutes of Health (U54HL127365)

  • Mario Niepel
  • Sang Kyun Lim
  • Peter K Sorger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Lyashenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,365
    views
  • 422
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eugenia Lyashenko
  2. Mario Niepel
  3. Purushottam D Dixit
  4. Sang Kyun Lim
  5. Peter K Sorger
  6. Dennis Vitkup
(2020)
Receptor-based mechanism of relative sensing and cell memory in mammalian signaling networks
eLife 9:e50342.
https://doi.org/10.7554/eLife.50342

Share this article

https://doi.org/10.7554/eLife.50342

Further reading

    1. Computational and Systems Biology
    Liqi Kang, Banghao Wu ... Liang Hong
    Research Article

    Artificial intelligence (AI) models have been used to study the compositional regularities of proteins in nature, enabling it to assist in protein design to improve the efficiency of protein engineering and reduce manufacturing cost. However, in industrial settings, proteins are often required to work in extreme environments where they are relatively scarce or even non-existent in nature. Since such proteins are almost absent in the training datasets, it is uncertain whether AI model possesses the capability of evolving the protein to adapt extreme conditions. Antibodies are crucial components of affinity chromatography, and they are hoped to remain active at the extreme environments where most proteins cannot tolerate. In this study, we applied an advanced large language model (LLM), the Pro-PRIME model, to improve the alkali resistance of a representative antibody, a VHH antibody capable of binding to growth hormone. Through two rounds of design, we ensured that the selected mutant has enhanced functionality, including higher thermal stability, extreme pH resistance, and stronger affinity, thereby validating the generalized capability of the LLM in meeting specific demands. To the best of our knowledge, this is the first LLM-designed protein product, which is successfully applied in mass production.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.