A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency

  1. Xiao Min Zhang
  2. Urielle François
  3. Kätlin Silm
  4. Maria Florencia Angelo
  5. Maria Victoria Fernandez-Busch
  6. Mona Maged
  7. Christelle Martin
  8. Véronique Bernard
  9. Fabrice P Cordelières
  10. Melissa Deshors
  11. Stéphanie Pons
  12. Uwe Maskos
  13. Alexis Pierre Bemelmans
  14. Sonja M Wojcik
  15. Salah El Mestikawy
  16. Yann Humeau
  17. Etienne Herzog  Is a corresponding author
  1. Interdisciplinary Institute for Neuroscience, Université de Bordeaux, France
  2. Interdisciplinary Institute for Neuroscience CNRS UMR 5297, France
  3. Max Planck Institute of Experimental Medicine, Germany
  4. Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, France
  5. Bordeaux Imaging Center, Université de Bordeaux, CNRS UMS 3420, INSERM US4, France
  6. Institut Pasteur, CNRS UMR 3571, Unité NISC, France
  7. Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de laRecherche Fondamentale (DRF), Institut de Biologie François Jacob (IBFJ), MolecularImaging Research Center (MIRCen), France
  8. Douglas Mental Health University Institute, McGill University, Canada
5 figures, 2 tables and 3 additional files

Figures

Figure 1 with 1 supplement
Dose dependent regulation of SV super-pool size by VGLUT1.

(A) Expression of Synaptobrevin2 fused to Enhanced Green Fluorescent Protein (Syb2EGFP) in hippocampal neurons at 18 days in culture. (B) examples of FRAP sequences from both Slc17a7 (VGLUT1) +/+ …

https://doi.org/10.7554/eLife.50401.002
Figure 1—source data 1

Raw data for FRAP experiments with VGLUT1 WT and KO culture.

https://doi.org/10.7554/eLife.50401.004
Figure 1—source data 2

Raw data for FRAP experiments with VGLUT1 rescued and VGLUT1 overexpressed culture.

https://doi.org/10.7554/eLife.50401.005
Figure 1—figure supplement 1
VGLUT2 does not rescue SV super-pool size in VGLUT1 knock out neurons.

(A) Average FRAP kinetics obtained upon rescue of VGLUT1 KO cells by either VGLUT1venus or VGLUT2venus lentivirus. 24 synapses from VGLUT1venus and 20 synapses from VGLUT2venus were measured by FRAP …

https://doi.org/10.7554/eLife.50401.003
Figure 1—figure supplement 1—source data 1

Raw data for FRAP experiments with VGLUT1 and VGLUT2 rescued culture.

https://doi.org/10.7554/eLife.50401.006
Structure of VGLUT1 and expression of mutants in neurons.

(A) schematic of VGLUT1 structure with 560 amino acids, 12 transmembrane domains, N- and C-termini facing the cytoplasmic side, and N-glycosylation at the first luminal loop. In blue the three …

https://doi.org/10.7554/eLife.50401.007
Figure 2—source data 1

Raw data for Bouton size and intensity in VGLUT1 WT and mutants rescued culture.

https://doi.org/10.7554/eLife.50401.008
Figure 3 with 2 supplements
Glutamate transport and SV tonicity are not involved in the reduction of SV super-pool size.

(A) Expression of VGLUT1mCherry, sVGLUT1mCherry and Syb2EGFP in hippocampal neurons. FRAP was performed on Syb2EGFP at axons, both on those with, and those without mCherry signal. Scale bar 5 µm. (B)…

https://doi.org/10.7554/eLife.50401.010
Figure 3—source data 1

Raw data for FRAP experiments with VGLUT1 WT, sVGLUT1 rescued and non-rescued culture.

https://doi.org/10.7554/eLife.50401.013
Figure 3—source data 2

Raw data for Electrophysiological recording with VGLUT1 WT and sVGLUT1 rescued culture.

https://doi.org/10.7554/eLife.50401.014
Figure 3—figure supplement 1
VGLUT2 expression diminishes in hippocampal neurons until DIV17.

(A) Immunofluorescence of VGLUT2 on hippocampal neurons at DIV 6, 12, 17, and 22. Scale bar 40 µm. (B) Quantification of VGLUT2 expression during hippocampal neuron culture development. Note the …

https://doi.org/10.7554/eLife.50401.011
Figure 3—figure supplement 1—source data 1

Raw data for Electrophysiological recording with VGLUT1 WT and sVGLUT1 rescued culture.

https://doi.org/10.7554/eLife.50401.015
Figure 3—figure supplement 2
Vesicular glutamate uptake function does not influence mIPSCs features.

(A) Spontaneous inhibitory activity in VGLUT1 KO rescued neurons. Example traces of mIPSC activity in wild type and sVGLUT1 rescue conditions. B: Comparison of the frequency of mIPSC events in wild …

https://doi.org/10.7554/eLife.50401.012
Figure 4 with 2 supplements
The VGLUT1 PRD2 domain mediates SV super-pool size and mEPSC frequency reductions.

(A) Comparison of VGLUT1venus and VGLUT1P554A-venus rescues of VGLUT1 KO on SV exchange rates at synapses. 21 (WT) and 22 (P554A) synapses from each rescue were measured by FRAP and the average …

https://doi.org/10.7554/eLife.50401.016
Figure 4—source data 1

Raw data for FRAP experiments with VGLUT1 WT and P554A rescued culture.

https://doi.org/10.7554/eLife.50401.019
Figure 4—source data 2

Raw data for FRAP experiments with VGLUT1 WT, ΔPRD 1+2 and ΔPRD 2 rescued culture.

https://doi.org/10.7554/eLife.50401.020
Figure 4—source data 3

Raw data for FRAP experiments with VGLUT1 WT and DQL514AQA rescued culture.

https://doi.org/10.7554/eLife.50401.021
Figure 4—source data 4

Raw data for FRAP experiments with VGLUT1 WT and PP534AA rescued culture.

https://doi.org/10.7554/eLife.50401.022
Figure 4—source data 5

Raw data for FRAP experiments with VGLUT1 WT and S540A rescued culture.

https://doi.org/10.7554/eLife.50401.023
Figure 4—source data 6

Raw data for FRAP experiments with VGLUT1 WT and T544A rescued culture.

https://doi.org/10.7554/eLife.50401.024
Figure 4—source data 7

Raw data for Cumulative SV axonal transport in VGLUT1 WT, P554A and S540A rescued culture.

https://doi.org/10.7554/eLife.50401.025
Figure 4—source data 8

Raw data for SV axonal transport speed in VGLUT1 WT, P554A and S540A rescued culture.

https://doi.org/10.7554/eLife.50401.026
Figure 4—source data 9

Raw data for Electrophysiological recording with VGLUT1 WT and P554A rescued and non-rescued culture.

https://doi.org/10.7554/eLife.50401.027
Figure 4—figure supplement 1
VGLUT1 is phosphorylated but not at the conserved 540-SYGAT motif.

(A) Effect of alkaline phosphatase on the electrophoretic mobility of VGLUT1 from forebrain homogenates (and positive control VIAAT ; Vesicular Inhibitory Amino-Acid Transporter). (B) regional …

https://doi.org/10.7554/eLife.50401.017
Figure 4—figure supplement 2
VGLUT1 PRD2 domain removal does not affect mIPSCs features.

(A) Spontaneous inhibitory activity in VGLUT1 KO neurons rescued by wild type and VGLUT1 P554A constructs. Example traces of mIPSC activity in sham controls, wild type and VGLUT1P554A rescue …

https://doi.org/10.7554/eLife.50401.018
Figure 4—figure supplement 2—source data 1

Raw data for Electrophysiological recording with VGLUT1 WT and P554A rescued and non-rescued culture.

https://doi.org/10.7554/eLife.50401.028
Figure 5 with 1 supplement
A tripartite complex between VGLUT1, endophilinA1 and intersectin1 mediates SV super-pool reduction.

(A) Schematic model of the competition experiment designed to test for the effective recruitment of intersectin1 at the VGLUT1/endophilinA1 complex (Pechstein et al., 2015). The three SH3 domains …

https://doi.org/10.7554/eLife.50401.029
Figure 5—source data 1

Raw data for FRAP experiments with SH3 domain mutant overexpressed VGLUT1venusculture.

https://doi.org/10.7554/eLife.50401.031
Figure 5—figure supplement 1
EndophilinA1 accumulates at synaptic vesicle clusters of VGLUT1 synapses.

Subcellular distribution of EndophilinA1 in VGLUT1 immunopositive terminals in mossy fiber terminals of the cerebellum (A,B) and cortico-striatal projections (C,D). We used pre-embedding immunogold …

https://doi.org/10.7554/eLife.50401.030

Tables

Table 1
List of mutant constructs tested.
https://doi.org/10.7554/eLife.50401.009
MutationDomain/MotifNamePutative
function
VGLUT1R80Q/R176K/R314QTM1;TM4;TM7sVGLUT1Glutamate transport
∆504–560Whole C-terminus∆C-termSV/VGLUT Trafficking
DQL514AQAPDZ type three bindingDQL514AQAUnknown
∆530–560Proline Rich Domains 1+2∆PRD1+2SH3 domain binding
PP534AAProline Rich Domain1PP534AASH3 domain binding
S540ASYGATS540AUnknown
T544ASYGATT544AUnknown
∆550–560Proline Rich Domain 2∆PRD2Endophilin binding
P554AProline Rich Domain 2P554AEndophilin binding
EndoA1 290–352SH3SH3Binds PRD and ITSN1 SH3B
EndoA1 290-352E329K,S336KSH3SH3E329K,S336KBinds PRD and ITSN1 SH3B
ITSN1 903–971SH3BSH3BEndo SH3 binding through E329 and S336
Key resources table
Reagent type
(species) or
resource
DesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)Slc17a7-/-(VGLUT1 KO) micePMID: 15103023available upon request to Dr Sonja M. Wojcik wojcik@em.mpg.de
Strain, strain background (Mus musculus)Slc17a7v/v(VGLUT1venus KI) micePMID: 22031900available upon request to corresponding author
Transfected construct (Homo sapiens)F(syn)W-RBN::Synaptobervin2-EGFPPMID: 23581566available upon request to Dr. Etienne HerzogFigure 1, Figure 3 and related results part.
Lentiviral vector expressing Syb2EGPF.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1-venusPMID: 23581566available upon request to Dr. Etienne HerzogFigure 1, Figure 4 and related results part.
Lentiviral vector expressing VGLUT1venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT2-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 1—figure supplement 1–S1 and related results part.
Lentiviral vector expressing VGLUT2venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 ∆C-term-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1∆C-term-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1
DQL514AQA-venus
This paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1DQL514AQA-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 ∆PRD1+2-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1∆PRD1+2-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 PP534AA-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1PP534AA-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 S540A-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1S540A-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 T544A-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1T544A-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 ∆PRD2-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1∆PRD2-venus.
Transfected construct (Rattus norvegicus)F(syn)W-RBN::VGLUT1 P554A-venusThis paperavailable upon request to Dr. Etienne HerzogFigure 4 and related results part.
Lentiviral vector expressing VGLUT1P554A-venus.
Transfected construct (Rattus norvegicus)AAV9::VGLUT1mCherry-miniSOGThis paperavailable upon request to Dr. Etienne HerzogFigure 3 and related results part.
Lentiviral vector expressing VGLUT1mCherry-miniSOG.
Transfected construct (Rattus norvegicus)AAV9::sVGLUT1mCherry-miniSOGThis paperavailable upon request to Dr. Etienne HerzogFigure 3 and related results part.
Lentiviral vector expressing sVGLUT1mCherry-miniSOG.
Transfected construct (Homo sapiens)AAV9::mCerulean3-EndophilinA1SH3This paperavailable upon request to Dr. Etienne HerzogFigure 5 and related results part.
Lentiviral vector expressing mCerulean3-EndophilinA1SH3.
Transfected construct (Homo sapiens)AAV9::mCerulean3-EndophilinA1SH3E329K, S336KThis paperavailable upon request to Dr. Etienne HerzogFigure 5 and related results part.
Lentiviral vector expressing mCerulean3-EndophilinA1SH3E329K, S336K.
Transfected construct (Homo sapiens)AAV9::mCerulean3-IntersectinSH3BThis paperavailable upon request to Dr. Etienne HerzogFigure 5 and related results part.
Lentiviral vector expressing mCerulean3-IntersectinSH3B.
AntibodyGFP, Mouse, monoclonalRocheCat. 11814460001
RRID:AB_390913
1:1000
AntibodyVIAAT, Guinea pig, polyclonalSYSYCat. 131004
RRID:AB_887873
1:1000
AntibodyVGLUT2, Guinea pig, polyclonalMilliporeCat. AB2251
RRID:AB_1587626
1:2000
AntibodyVGLUT1, guinea pig, polyclonalMerckCat. AB5905
RRID:AB_2301751
1:5000
AntibodyEndophilinA1, rabbit, polyclonalPMID: 16606361available upon request to Dr. Etienne Herzog1:500
Peptide, recombinant proteinFastAP Thermosensitive Alkaline PhosphataseThermo ScientificCat. EF0651
Peptide, recombinant proteinHaltphosphatase inhibitor cocktailThermo ScientificCat. 78420
Chemical compound, drugPhos-tag AcrylamidWakoCat. AAL-107
Software, algorithmFRAP Analysis PluginThis paperThe plugin is available at: https://github.com/fabricecordelieres/IJ-Macro_FRAP-MM
Software, algorithmKymoToolbox PluginPMID: 23374344The plugin is available at: https://github.com/fabricecordelieres/IJ-Plugin_KymoToolBox

Additional files

Supplementary file 1

Supplementary tables collating statistical analysis.

https://doi.org/10.7554/eLife.50401.032
Supplementary file 2

Seal test recording of every cell in the electrophysiology analysis.

https://doi.org/10.7554/eLife.50401.033
Transparent reporting form
https://doi.org/10.7554/eLife.50401.034

Download links