1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Extraction of active RhoGTPases by RhoGDI regulates spatiotemporal patterning of RhoGTPases

  1. Adriana E Golding  Is a corresponding author
  2. Ilaria Visco
  3. Peter Bieling  Is a corresponding author
  4. William M Bement
  1. University of Wisconsin-Madison, United States
  2. Max Planck Institute of Molecular Physiology, Germany
Research Article
  • Cited 6
  • Views 2,467
  • Annotations
Cite this article as: eLife 2019;8:e50471 doi: 10.7554/eLife.50471

Abstract

The RhoGTPases are characterized as membrane-associated molecular switches that cycle between active, GTP-bound and inactive, GDP-bound states. However, 90-95% of RhoGTPases are maintained in a soluble form by RhoGDI, which is generally viewed as a passive shuttle for inactive RhoGTPases. Our current understanding of RhoGTPase:RhoGDI dynamics has been limited by two experimental challenges: direct visualization of the RhoGTPases in vivo and reconstitution of the cycle in vitro. We developed methods to directly image vertebrate RhoGTPases in vivo or on lipid bilayers in vitro. Using these methods, we identified pools of active and inactive RhoGTPase associated with the membrane, found that RhoGDI can extract both inactive and active RhoGTPases, and found that extraction of active RhoGTPase contributes to their spatial regulation around cell wounds. These results indicate that RhoGDI directly contributes to the spatiotemporal patterning of RhoGTPases by removing active RhoGTPases from the plasma membrane.

Article and author information

Author details

  1. Adriana E Golding

    Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    aegolding@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4305-0764
  2. Ilaria Visco

    Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3753-6434
  3. Peter Bieling

    Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    peter.bieling@mpi-dortmund.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7458-4358
  4. William M Bement

    Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (GM52932)

  • William M Bement

University of Wisconsin-Madison (Dr. Stanley and Dr. Eva Lurie Weinreb Fellowship)

  • Adriana E Golding

Human Frontier Science Program (HSFP CDA00070-2017-2)

  • Peter Bieling

Max Planck Society (MaxSynBio Consortium)

  • Ilaria Visco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The University of Wisconsin-Madison Animal Care and Use Committee has reviewed and approved all of the experiments performed for this study, outlined in protocol G005386-RO1.

Reviewing Editor

  1. Jonathan Chernoff, Fox Chase Cancer Center, United States

Publication history

  1. Received: July 23, 2019
  2. Accepted: October 23, 2019
  3. Accepted Manuscript published: October 24, 2019 (version 1)
  4. Version of Record published: December 13, 2019 (version 2)

Copyright

© 2019, Golding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,467
    Page views
  • 494
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sara N Mouton et al.
    Tools and Resources

    Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells we observe drastic changes in organellar volume, leading to crowding on the µm scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells.

    1. Biochemistry and Chemical Biology
    Erica N Thomas et al.
    Research Article Updated

    Similar to DNA replication, translation of the genetic code by the ribosome is hypothesized to be exceptionally sensitive to small chemical changes to its template mRNA. Here we show that the addition of common alkylating agents to growing cultures of Escherichia coli leads to the accumulation of several adducts within RNA, including N(1)-methyladenosine (m1A). As expected, the introduction of m1A to model mRNAs was found to reduce the rate of peptide bond formation by three orders of magnitude in a well-defined in vitro system. These observations suggest that alkylative stress is likely to stall translation in vivo and necessitates the activation of ribosome-rescue pathways. Indeed, the addition of alkylation agents was found to robustly activate the transfer-messenger RNA system, even when transcription was inhibited. Our findings suggest that bacteria carefully monitor the chemical integrity of their mRNA and they evolved rescue pathways to cope with its effect on translation.