1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Extraction of active RhoGTPases by RhoGDI regulates spatiotemporal patterning of RhoGTPases

  1. Adriana E Golding  Is a corresponding author
  2. Ilaria Visco
  3. Peter Bieling  Is a corresponding author
  4. William M Bement
  1. University of Wisconsin-Madison, United States
  2. Max Planck Institute of Molecular Physiology, Germany
Research Article
  • Cited 20
  • Views 3,083
  • Annotations
Cite this article as: eLife 2019;8:e50471 doi: 10.7554/eLife.50471

Abstract

The RhoGTPases are characterized as membrane-associated molecular switches that cycle between active, GTP-bound and inactive, GDP-bound states. However, 90-95% of RhoGTPases are maintained in a soluble form by RhoGDI, which is generally viewed as a passive shuttle for inactive RhoGTPases. Our current understanding of RhoGTPase:RhoGDI dynamics has been limited by two experimental challenges: direct visualization of the RhoGTPases in vivo and reconstitution of the cycle in vitro. We developed methods to directly image vertebrate RhoGTPases in vivo or on lipid bilayers in vitro. Using these methods, we identified pools of active and inactive RhoGTPase associated with the membrane, found that RhoGDI can extract both inactive and active RhoGTPases, and found that extraction of active RhoGTPase contributes to their spatial regulation around cell wounds. These results indicate that RhoGDI directly contributes to the spatiotemporal patterning of RhoGTPases by removing active RhoGTPases from the plasma membrane.

Data availability

All quantifications made in this study are included as source data files by figure.

Article and author information

Author details

  1. Adriana E Golding

    Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    aegolding@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4305-0764
  2. Ilaria Visco

    Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3753-6434
  3. Peter Bieling

    Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    peter.bieling@mpi-dortmund.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7458-4358
  4. William M Bement

    Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (GM52932)

  • William M Bement

University of Wisconsin-Madison (Dr. Stanley and Dr. Eva Lurie Weinreb Fellowship)

  • Adriana E Golding

Human Frontier Science Program (HSFP CDA00070-2017-2)

  • Peter Bieling

Max Planck Society (MaxSynBio Consortium)

  • Ilaria Visco

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The University of Wisconsin-Madison Animal Care and Use Committee has reviewed and approved all of the experiments performed for this study, outlined in protocol G005386-RO1.

Reviewing Editor

  1. Jonathan Chernoff, Fox Chase Cancer Center, United States

Publication history

  1. Received: July 23, 2019
  2. Accepted: October 23, 2019
  3. Accepted Manuscript published: October 24, 2019 (version 1)
  4. Version of Record published: December 13, 2019 (version 2)

Copyright

© 2019, Golding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,083
    Page views
  • 554
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.