Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS

  1. Bharat Reddy
  2. Navid Bavi
  3. Allen Lu
  4. Yeonwoo Park
  5. Eduardo Perozo  Is a corresponding author
  1. The University of Chicago, United States

Abstract

Prokaryotic mechanosensitive (MS) channels open by sensing the physical state of the membrane. As such, lipid-protein interactions represent the defining molecular process underlying mechanotransduction. Here, we describe cryo-electron microscopy (cryo-EM) structures of the E. coli small-conductance mechanosensitive channel (MscS) in nanodiscs (ND). They reveal a novel membrane-anchoring fold that plays a significant role in channel activation and establish a new location for the lipid bilayer, shifted ~14 Å from previous consensus placements. Two types of lipid densities are explicitly observed. A phospholipid that 'hooks' the top of each TM2-TM3 hairpin and likely plays a role in force sensing, and a bundle of acyl chains occluding the permeation path above the L105 cuff. These observations reshape our understanding of force-from-lipids gating in MscS and highlight the key role of allosteric interactions between TM segments and phospholipids bound to key dynamic components of the channel.

Data availability

EM maps and atomic models have been deposited at the Electron Microscopy Data Bank (accession numbers EMD-20508, EMD-20510, EMD-20509, and EMD-20148) and the Protein Data Back (entry codes 6PWN, 6PWP and 6PWO).

The following data sets were generated
    1. Reddy BG
    2. Perozo E
    (2019) MscS Nanodisc
    Electron Microscopy Data Bank, EMD-20510.
    1. Reddy BG
    2. Perozo E
    (2019) MscS DDM
    Electron Microscopy Data Bank, EMD-20509.

Article and author information

Author details

  1. Bharat Reddy

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Navid Bavi

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Allen Lu

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yeonwoo Park

    Department of Ecology and Evolution, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eduardo Perozo

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    For correspondence
    eperozo@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7132-2793

Funding

National Institute of General Medical Sciences (R01GM131191)

  • Eduardo Perozo

National Institute of General Medical Sciences (U54GM087519)

  • Eduardo Perozo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Version history

  1. Received: July 24, 2019
  2. Accepted: December 27, 2019
  3. Accepted Manuscript published: December 27, 2019 (version 1)
  4. Version of Record published: January 24, 2020 (version 2)

Copyright

© 2019, Reddy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,151
    Page views
  • 881
    Downloads
  • 70
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bharat Reddy
  2. Navid Bavi
  3. Allen Lu
  4. Yeonwoo Park
  5. Eduardo Perozo
(2019)
Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS
eLife 8:e50486.
https://doi.org/10.7554/eLife.50486

Share this article

https://doi.org/10.7554/eLife.50486

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Karolina Honzejkova, Dalibor Kosek ... Tomas Obsil
    Research Article

    Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniyal Tariq, Nicole Maurici ... Brian R Crane
    Research Article

    Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid–liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.