Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak

  1. João V Rodrigues
  2. Eugene I Shakhnovich  Is a corresponding author
  1. Harvard University, United States

Abstract

The mechanisms of adaptation to inactivation of essential genes remain unknown. Here we inactivate E. coli dihydrofolate reductase (DHFR) by introducing D27G,N,F chromosomal mutations in a key catalytic residue with subsequent adaptation by an automated serial transfer protocol. The partial reversal G27->C occurred in three evolutionary trajectories. Conversely, in one trajectory for D27G and in all trajectories for D27F,N strains adapted to grow at very low metabolic supplement (folAmix) concentrations but did not escape entirely from supplement auxotrophy. Major global shifts in metabolome and proteome occurred upon DHFR inactivation, which were partially reversed in adapted strains. Loss-of-function mutations in two genes, thyA and deoB, ensured adaptation to low folAmix by rerouting the 2-Deoxy-D-ribose-phosphate metabolism from glycolysis towards synthesis of dTMP. Multiple evolutionary pathways of adaptation converged to a suboptimal solution due to the high accessibility to loss-of-function mutations that block the path to the highest, yet least accessible, fitness peak.

Data availability

All data are presented in supplementary datasets S1-S4

The following data sets were generated

Article and author information

Author details

  1. João V Rodrigues

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eugene I Shakhnovich

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
    For correspondence
    shakhnovich@chemistry.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4769-2265

Funding

National Institute of General Medical Sciences (068670)

  • João V Rodrigues

National Institute of General Medical Sciences (068670)

  • Eugene I Shakhnovich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Rodrigues & Shakhnovich

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,256
    views
  • 325
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. João V Rodrigues
  2. Eugene I Shakhnovich
(2019)
Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak
eLife 8:e50509.
https://doi.org/10.7554/eLife.50509

Share this article

https://doi.org/10.7554/eLife.50509