Axon-like protrusions promote small cell lung cancer migration and metastasis

Abstract

Metastasis is the main cause of death in cancer patients but remains a poorly understood process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic cancer types. SCLC cells normally express neuroendocrine and neuronal gene programs but accumulating evidence indicates that these cancer cells become relatively more neuronal and less neuroendocrine as they gain the ability to metastasize. Here we show that mouse and human SCLC cells in culture and in vivo can grow cellular protrusions that resemble axons. The formation of these protrusions is controlled by multiple neuronal factors implicated in axonogenesis, axon guidance, and neuroblast migration. Disruption of these axon-like protrusions impairs cell migration in culture and inhibits metastatic ability in vivo. The co-option of developmental neuronal programs is a novel molecular and cellular mechanism that contributes to the high metastatic ability of SCLC.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Dian Yang

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Fangfei Qu

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Hongchen Cai

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Chen-Hua Chuang

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Jing Shan Lim

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Nadine Jahchan

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Barbara M Grüner

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0974-4826
  8. Christin S Kuo

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  9. Christina Kong

    Department of Pathology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  10. Madeleine J Oudin

    Department of Biomedical Engineering, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  11. Monte M Winslow

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    For correspondence
    mwinslow@stanford.edu
    Competing interests
    No competing interests declared.
  12. Julien Sage

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    For correspondence
    julsage@stanford.edu
    Competing interests
    Julien Sage, receives research funding from Stemcentrx/Abbvie, Pfizer, and Revolution Medicines and owns stock in Forty Seven Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8928-9968

Funding

National Cancer Institute (NIH R01 CA206540)

  • Julien Sage

National Cancer Institute (P30 CA124435)

  • Monte M Winslow
  • Julien Sage

Tobacco-Related Disease Research Program (24DT-0001)

  • Dian Yang

Damon Runyon Cancer Research Foundation

  • Fangfei Qu

Tobacco-Related Disease Research Program

  • Hongchen Cai

American Lung Association

  • Chen-Hua Chuang

Pancreatic Cancer Action Network

  • Barbara M Grüner

Hope Funds for Cancer Research

  • Barbara M Grüner

National Cancer Institute (R00 CA207866)

  • Madeleine J Oudin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan A Cooper, Fred Hutchinson Cancer Research Center, United States

Ethics

Animal experimentation: All experiments were performed in accordance with Stanford University Institutional Animal Care and Use Committee guidelines (protocol number 13565).

Version history

  1. Received: July 27, 2019
  2. Accepted: December 13, 2019
  3. Accepted Manuscript published: December 13, 2019 (version 1)
  4. Version of Record published: January 2, 2020 (version 2)

Copyright

© 2019, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,857
    views
  • 710
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dian Yang
  2. Fangfei Qu
  3. Hongchen Cai
  4. Chen-Hua Chuang
  5. Jing Shan Lim
  6. Nadine Jahchan
  7. Barbara M Grüner
  8. Christin S Kuo
  9. Christina Kong
  10. Madeleine J Oudin
  11. Monte M Winslow
  12. Julien Sage
(2019)
Axon-like protrusions promote small cell lung cancer migration and metastasis
eLife 8:e50616.
https://doi.org/10.7554/eLife.50616

Share this article

https://doi.org/10.7554/eLife.50616

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.