Axon-like protrusions promote small cell lung cancer migration and metastasis

Abstract

Metastasis is the main cause of death in cancer patients but remains a poorly understood process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic cancer types. SCLC cells normally express neuroendocrine and neuronal gene programs but accumulating evidence indicates that these cancer cells become relatively more neuronal and less neuroendocrine as they gain the ability to metastasize. Here we show that mouse and human SCLC cells in culture and in vivo can grow cellular protrusions that resemble axons. The formation of these protrusions is controlled by multiple neuronal factors implicated in axonogenesis, axon guidance, and neuroblast migration. Disruption of these axon-like protrusions impairs cell migration in culture and inhibits metastatic ability in vivo. The co-option of developmental neuronal programs is a novel molecular and cellular mechanism that contributes to the high metastatic ability of SCLC.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Dian Yang

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Fangfei Qu

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Hongchen Cai

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Chen-Hua Chuang

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Jing Shan Lim

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Nadine Jahchan

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Barbara M Grüner

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0974-4826
  8. Christin S Kuo

    Department of Pediatrics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  9. Christina Kong

    Department of Pathology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  10. Madeleine J Oudin

    Department of Biomedical Engineering, Tufts University, Medford, United States
    Competing interests
    No competing interests declared.
  11. Monte M Winslow

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    For correspondence
    mwinslow@stanford.edu
    Competing interests
    No competing interests declared.
  12. Julien Sage

    Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
    For correspondence
    julsage@stanford.edu
    Competing interests
    Julien Sage, receives research funding from Stemcentrx/Abbvie, Pfizer, and Revolution Medicines and owns stock in Forty Seven Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8928-9968

Funding

National Cancer Institute (NIH R01 CA206540)

  • Julien Sage

National Cancer Institute (P30 CA124435)

  • Monte M Winslow
  • Julien Sage

Tobacco-Related Disease Research Program (24DT-0001)

  • Dian Yang

Damon Runyon Cancer Research Foundation

  • Fangfei Qu

Tobacco-Related Disease Research Program

  • Hongchen Cai

American Lung Association

  • Chen-Hua Chuang

Pancreatic Cancer Action Network

  • Barbara M Grüner

Hope Funds for Cancer Research

  • Barbara M Grüner

National Cancer Institute (R00 CA207866)

  • Madeleine J Oudin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with Stanford University Institutional Animal Care and Use Committee guidelines (protocol number 13565).

Copyright

© 2019, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,094
    views
  • 736
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dian Yang
  2. Fangfei Qu
  3. Hongchen Cai
  4. Chen-Hua Chuang
  5. Jing Shan Lim
  6. Nadine Jahchan
  7. Barbara M Grüner
  8. Christin S Kuo
  9. Christina Kong
  10. Madeleine J Oudin
  11. Monte M Winslow
  12. Julien Sage
(2019)
Axon-like protrusions promote small cell lung cancer migration and metastasis
eLife 8:e50616.
https://doi.org/10.7554/eLife.50616

Share this article

https://doi.org/10.7554/eLife.50616

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.