Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind

  1. Stefania Mattioni  Is a corresponding author
  2. Mohamed Rezk
  3. Ceren Battal
  4. Roberto Bottini
  5. Karen E Cuculiza Mendoza
  6. Nikolaas N Oosterhof
  7. Olivier Collignon  Is a corresponding author
  1. Université catholique de Louvain, Belgium
  2. Université catholique de Louvain (UcL), Belgium
  3. University of Trento, Italy

Abstract

Is vision necessary for the development of the categorical organization of the Ventral Occipito-Temporal Cortex (VOTC)? We used fMRI to characterize VOTC responses to eight categories presented acoustically in sighted and early blind individuals, and visually in a separate sighted group. We observed that VOTC reliably encodes sound categories in sighted and blind people using a representational structure and connectivity partially similar to the one found in vision. Sound categories were, however, more reliably encoded in the blind than the sighted group, using a representational format closer to the one found in vision. Crucially, VOTC in blind represents the categorical membership of sounds rather than their acoustic features. Our results suggest that sounds trigger categorical responses in the VOTC of congenitally blind and sighted people that partially match the topography and functional profile of the visual response, despite qualitative nuances in the categorical organization of VOTC between modalities and groups.

Data availability

Processed data have been made available on OSF at the link https://osf.io/erdxz/. To preserve participant anonymity and due to restrictions on data sharing in our ethical approval, fully anonymised raw data can only be shared upon request to the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Stefania Mattioni

    IPSY, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    stefania.mattioni@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8279-6118
  2. Mohamed Rezk

    IPSY, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Ceren Battal

    IPSY, Université catholique de Louvain (UcL), Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9844-7630
  4. Roberto Bottini

    Center for Mind/Brain Studies, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7941-7762
  5. Karen E Cuculiza Mendoza

    CIMeC, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikolaas N Oosterhof

    CIMeC, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivier Collignon

    IPSY - IONS, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    olivier.collignon@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1882-3550

Funding

European Commission (Starting Grant MADVIS: 337573)

  • Olivier Collignon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The ethical committee of the University of Trento approved this study (protocol 2014-007) and participants gave their informed consent before participation.

Copyright

© 2020, Mattioni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 480
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.50732

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.