Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind

  1. Stefania Mattioni  Is a corresponding author
  2. Mohamed Rezk
  3. Ceren Battal
  4. Roberto Bottini
  5. Karen E Cuculiza Mendoza
  6. Nikolaas N Oosterhof
  7. Olivier Collignon  Is a corresponding author
  1. Université catholique de Louvain, Belgium
  2. Université catholique de Louvain (UcL), Belgium
  3. University of Trento, Italy

Abstract

Is vision necessary for the development of the categorical organization of the Ventral Occipito-Temporal Cortex (VOTC)? We used fMRI to characterize VOTC responses to eight categories presented acoustically in sighted and early blind individuals, and visually in a separate sighted group. We observed that VOTC reliably encodes sound categories in sighted and blind people using a representational structure and connectivity partially similar to the one found in vision. Sound categories were, however, more reliably encoded in the blind than the sighted group, using a representational format closer to the one found in vision. Crucially, VOTC in blind represents the categorical membership of sounds rather than their acoustic features. Our results suggest that sounds trigger categorical responses in the VOTC of congenitally blind and sighted people that partially match the topography and functional profile of the visual response, despite qualitative nuances in the categorical organization of VOTC between modalities and groups.

Data availability

Processed data have been made available on OSF at the link https://osf.io/erdxz/. To preserve participant anonymity and due to restrictions on data sharing in our ethical approval, fully anonymised raw data can only be shared upon request to the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Stefania Mattioni

    IPSY, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    stefania.mattioni@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8279-6118
  2. Mohamed Rezk

    IPSY, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Ceren Battal

    IPSY, Université catholique de Louvain (UcL), Louvain-la-Neuve, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9844-7630
  4. Roberto Bottini

    Center for Mind/Brain Studies, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7941-7762
  5. Karen E Cuculiza Mendoza

    CIMeC, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikolaas N Oosterhof

    CIMeC, University of Trento, Trento, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Olivier Collignon

    IPSY - IONS, Université catholique de Louvain, Louvain-la-Neuve, Belgium
    For correspondence
    olivier.collignon@uclouvain.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1882-3550

Funding

European Commission (Starting Grant MADVIS: 337573)

  • Olivier Collignon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tamar R Makin, University College London, United Kingdom

Ethics

Human subjects: The ethical committee of the University of Trento approved this study (protocol 2014-007) and participants gave their informed consent before participation.

Version history

  1. Received: July 31, 2019
  2. Accepted: February 14, 2020
  3. Accepted Manuscript published: February 28, 2020 (version 1)
  4. Version of Record published: March 31, 2020 (version 2)

Copyright

© 2020, Mattioni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,176
    views
  • 456
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefania Mattioni
  2. Mohamed Rezk
  3. Ceren Battal
  4. Roberto Bottini
  5. Karen E Cuculiza Mendoza
  6. Nikolaas N Oosterhof
  7. Olivier Collignon
(2020)
Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind
eLife 9:e50732.
https://doi.org/10.7554/eLife.50732

Share this article

https://doi.org/10.7554/eLife.50732

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Pau Vilimelis Aceituno, Dominic Dall'Osto, Ioannis Pisokas
    Research Article

    To navigate their environment, insects need to keep track of their orientation. Previous work has shown that insects encode their head direction as a sinusoidal activity pattern around a ring of neurons arranged in an eight-column structure. However, it is unclear whether this sinusoidal encoding of head direction is just an evolutionary coincidence or if it offers a particular functional advantage. To address this question, we establish the basic mathematical requirements for direction encoding and show that it can be performed by many circuits, all with different activity patterns. Among these activity patterns, we prove that the sinusoidal one is the most noise-resilient, but only when coupled with a sinusoidal connectivity pattern between the encoding neurons. We compare this predicted optimal connectivity pattern with anatomical data from the head direction circuits of the locust and the fruit fly, finding that our theory agrees with experimental evidence. Furthermore, we demonstrate that our predicted circuit can emerge using Hebbian plasticity, implying that the neural connectivity does not need to be explicitly encoded in the genetic program of the insect but rather can emerge during development. Finally, we illustrate that in our theory, the consistent presence of the eight-column organisation of head direction circuits across multiple insect species is not a chance artefact but instead can be explained by basic evolutionary principles.

    1. Neuroscience
    He-Hai Jiang, Ruoxuan Xu ... Fujun Luo
    Research Article

    Neurexins play diverse functions as presynaptic organizers in various glutamatergic and GABAergic synapses. However, it remains unknown whether and how neurexins are involved in shaping functional properties of the glycinergic synapses, which mediate prominent inhibition in the brainstem and spinal cord. To address these issues, we examined the role of neurexins in a model glycinergic synapse between the principal neuron in the medial nucleus of the trapezoid body (MNTB) and the principal neuron in the lateral superior olive (LSO) in the auditory brainstem. Combining RNAscope with stereotactic injection of AAV-Cre in the MNTB of neurexin1/2/3 conditional triple knockout mice, we showed that MNTB neurons highly express all isoforms of neurexins although their expression levels vary remarkably. Selective ablation of all neurexins in MNTB neurons not only reduced the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons. The synaptic dysfunctions primarily resulted from an impaired Ca2+ sensitivity of release and a loosened coupling between voltage-gated Ca2+ channels and synaptic vesicles. Together, our current findings demonstrate that neurexins are essential in controlling the strength and temporal precision of the glycinergic synapse, which therefore corroborates the role of neurexins as key presynaptic organizers in all major types of fast chemical synapses.