Single-cell proteomics reveals changes in expression during hair-cell development

  1. Ying Zhu
  2. Mirko Scheibinger
  3. Daniel Christian Ellwanger
  4. Jocelyn F Krey
  5. Dongseok Choi
  6. Ryan T Kelly
  7. Stefan Heller
  8. Peter G Barr-Gillespie  Is a corresponding author
  1. Pacific Northwest National Laboratory, United States
  2. Stanford University, United States
  3. Amgen Inc, United States
  4. Oregon Health & Science University, United States
  5. Kyung Hee University, Republic of Korea
  6. Brigham Young University, United States
5 figures, 4 tables and 2 additional files

Figures

Figure 1 with 2 supplements
Mass spectrometry of single cells and small cell pools from E15 chick utricle.

(A) Experimental design. The E15 chick utricle’s sensory epithelium consists of sensory hair cells and supporting cells, which are also progenitor cells. FM1-43 labels hair cells more strongly than supporting cells. The dissociated cells were sorted by FACS and deposited into single nanowells in nanoPOTS chips, where sample processing was carried out without transfer. Samples were loaded into glass microcapillaries and were analyzed by mass spectrometry. LC-MS/MS, liquid chromatography-tandem mass spectrometry. (B) FACS-sorted FM1-43high cell with typical hair cell cytomorphology, including apical hair bundle. (C) FACS-sorted FM1-43low cell shows rounded cytomorphology after dissociation. For B and C, FM1-43 dye was added again to cells after sorting in order to visualize cell shape; dye intensity therefore is not representative of the signal used for sorting hair cells from supporting cells. (D–E) Relationship between number of cells and unique peptides. Peptides directly identified by MS2 (peptide fragmentation) spectrum matching are shown by circles and those indirectly identified by Match Between Runs by squares; data are separately plotted for FM1-43high (D) and FM1-43low (E). Gray solid lines are power fits to data through (0,0); gray dashed line is fit to sum of the MS/MS and Matched data. (F) Relationship between number of cells and total iBAQ. Gray solid line is power fit through (0,0); gray dashed line is linear fit through (0,0). Green, FM1-43high; black, FM1-43low. Inset shows 1–3 cells only. (G) Relationship between number of cells and the total number of proteins or protein groups identified. Gray solid line is power fit through (0,0). Data for D-G were from Experiment 1; mean ± SEM are plotted. (H) Distribution of total iBAQ for individual cells (FM1-43high, green; FM1-43low, black) or for blank wells (red). Count refers to the number of cells in a bin. Note that total iBAQ does not distinguish individual cells from noise. (I) Distribution of number of identified proteins or protein groups. This measure distinctly distinguishes individual cells from noise; those FM1-43high or FM1-43low samples with low numbers of identifications likely do not have cells in the nanowells. Data for H-I were from Experiment 2.

https://doi.org/10.7554/eLife.50777.002
Figure 1—source data 1

MaxQuant analysis of single cell proteomics data.

Excel file containing data from Experiments 1 and 2 analyzed together by MaxQuant and Andromeda.

https://doi.org/10.7554/eLife.50777.005
Figure 1—figure supplement 1
Characterization of isolated utricle cells.

(A-C) FACS gating protocol. (A) Debris was removed based on side-scatter area (SSC-A) and forward-scatter area (FSC-A). Blue box shows cells collected. (B) Doublets were discarded based on forward scatter (FSC) versus trigger pulse width. Red box shows cells collected. (C) SYTOX Red Dead Cell Stain was used to identify live and dead cells, while FM1-43 was used to distinguish single FM1-43low cells (left, black box, 25% of total events) and FM1-43high cells (right, green box, 29% of total events). (D) Isolated hair cell and HeLa cell, labeled after dissociation with FM1-43 (green) and DAPI (blue). The box indicating the x-y extent of the x-z reslice shown in the upper panel is indicated by the magenta box. Average projection was used.

https://doi.org/10.7554/eLife.50777.003
Figure 1—figure supplement 2
Peptide coverage of TMSB4X in mass spectrometry experiments.

Characterization of isolated utricle cells. (A–C) FACS gating protocol. (A) Debris was removed based on side-scatter area (SSC-A) and forward-scatter area (FSC-A). Blue box shows cells collected. (B) Doublets were discarded based on forward scatter (FSC) versus trigger pulse width. Red box shows cells collected. (C) SYTOX Red Dead Cell Stain was used to identify live and dead cells, while FM1-43 was used to distinguish single FM1-43low cells (left, black box, 25% of total events) and FM1-43high cells (right, green box, 29% of total events). (D) Isolated hair cell and HeLa cell, labeled after dissociation with FM1-43 (green) and DAPI (blue). The box indicating the x-y extent of the x-z reslice shown in the upper panel is indicated by the magenta box. Average projection was used.

https://doi.org/10.7554/eLife.50777.004
Figure 2 with 3 supplements
Abundant proteins in small pools of isolated E15 chick utricle cells.

(A) Heat map showing top 60 proteins or protein groups in samples of 20 cells, sorted by the average of the 20 cell FM1-43high samples. FM1-43low and FM1-43high samples from Experiment 1 (Exp1) and Experiment 2 (Exp2) are both displayed, as are the averages of the individual samples. TMSB4X is called out with magenta type. Scale on bottom indicates relationship between riBAQ and color. (B) Volcano plot showing relationship between FM1-43high/FM1-43low enrichment (x-axis) and false discovery rate (FDR)-adjusted p-value (y-axis). Proteins that are significantly enriched are labeled with green (FM1-43high>FM1-43low) or black (FM1-43low>FM1-43high). (C) ACTG1 and TMBS4X quantitation. Relative molar fraction (riBAQ) quantitation of ACTG1 (circle, red fill) and TMSB4X (square, magenta fill) expression in FM1-43high cells (green outline) or FM1-43low cells (black outline). Samples with 20 cells are plotted; lines indicate mean expression level for the group. Statistical significance is indicated.

https://doi.org/10.7554/eLife.50777.006
Figure 2—figure supplement 1
Expression levels for all proteins in samples from Experiments 1 and 2 that contain pools of three cells, five cells, or 20 cells.

Each sample (indicated by letters) under the callout for cell numbers contains that number of cells (i.e., on the left, samples a-c under labels indicating ‘Experiment 1’ and ‘FM1-43 low’ each contain three cells). Log10 riBAQ color scale is indicated at bottom. Heat map is sorted by the average of the 20 cell FM1-43high samples from Experiment 1. Three samples (from Experiment 2) that were collected during FACS experiments using noise to gate are also shown.

https://doi.org/10.7554/eLife.50777.007
Figure 2—figure supplement 2
Expression levels for all proteins in samples from Experiments 1 and 2 from single-cell samples.

Each sample is indicated by letters. ‘Avg’ indicates the average of the 20 cell samples for that condition and experiment. Log10 riBAQ color scale is indicated at bottom. Heat map is sorted by the average of the 20 cell FM1-43high samples from Experiment 1. Three samples (from Experiment 2) that were collected during FACS experiments using noise to gate are also shown.

https://doi.org/10.7554/eLife.50777.008
Figure 2—figure supplement 3
Expression levels for all proteins in single-cell samples in Experiments 1 and 2.

Each sample is indicated by letters. ‘Avg’ indicates the average of the 20 cell samples for that condition and experiment. Heat map, which shows all identified proteins or protein groups in single cells, is sorted by the FM1-43high20 cell average from Experiment 1. Three samples (from Experiment 2) that were collected during FACS experiments using noise to gate are also shown.

https://doi.org/10.7554/eLife.50777.009
Figure 3 with 6 supplements
Immunolocalization of proteins enriched in hair cells or supporting cells of E15 chick utricle.

Confocal z-stacks of vibratome cross-sections of the whole utricle were imaged with the tiling and stitching function in Zeiss ZEN. Confocal z-stacks for magnified extrastriolar and striolar regions were collected separately. A subset of the z-stacks series was used for the maximum intensity projection to preserve single-cell resolution. Hair cells are labeled with antibodies against OTOF or MYO7A (each in magenta). (A–C) AGR3 (green) was detected in extrastriolar and striolar supporting cells. Panel full widths: A, 913 µm; B-C, 125 µm. (D–F) CRABP1 (green) is concentrated in hair cells. A few extrastriolar hair cells show very high levels of CRABP1 (arrows). Panel full widths: D, 1038 µm; E-F, 125 µm. (G–I) TMSB4X (green) immunoreactivity was intense in cells of the mesenchymal stromal cell layer. TMSB4X was detectable at moderate levels in extrastriolar and striolar supporting cells and at low levels in hair cells located in extrastriolar and striolar regions. Panel full widths: G, 934 µm; H-I, 125 µm. (J–L) G-actin (JLA20 antibody, green) is expressed at equal levels in hair cells, supporting cells and mesenchymal stromal cells. Panel full widths: J, 839 µm; K-L, 125 µm. (M–O) OCM was detectable at high levels in striolar hair cells and at low levels in extrastriolar hair cells. A few extrastriolar hair cells display high levels of OCM (arrows). Panel full widths: M, 946 µm; N-O, 125 µm. Expanded images of all individual channels (transmitted light, nuclei, F-actin, hair cells, and specific antibody) are shown in Figure 3—figure supplements 15.

https://doi.org/10.7554/eLife.50777.010
Figure 3—figure supplement 1
Immunolocalization of AGR3 in E15 chick utricle.

The sensory epithelium and the stroma are indicated in the transmitted-light section. Nuclei were stained with DAPI and F-actin with phalloidin; OTOF and AGR3 were stained with specific antibodies. Magnified panels on right clearly show that hair cells (marked by OTOF staining) have much lower levels of AGR3 than do supporting cells, which surround hair cells. Panel full widths: A, 913 µm; B-C, 125 µm.

https://doi.org/10.7554/eLife.50777.011
Figure 3—figure supplement 2
Immunolocalization of CRABP1 in E15 chick utricle.

The sensory epithelium and the stroma are indicated in the transmitted-light section. Nuclei were stained with DAPI and F-actin with phalloidin; MYO7A and CRABP1 were stained with specific antibodies. Magnified panels on right clearly show that hair cells are co-labeled by CRABP1 and OTOF antibodies. Panel full widths: A, 1038 µm; B-C, 125 µm.

https://doi.org/10.7554/eLife.50777.012
Figure 3—figure supplement 3
TMSB4X localization.

The sensory epithelium and the stroma are indicated in the transmitted-light section. Nuclei were stained with DAPI and F-actin with phalloidin; OTOF and TMSB4X were stained with specific antibodies. TMSB4X is high in the stroma, at moderate levels in supporting cells, and low in hair cells. Panel full widths: A, 934 µm; B-C, 125 µm.

https://doi.org/10.7554/eLife.50777.013
Figure 3—figure supplement 4
G-actin localization with JLA20 antibody.

The sensory epithelium and the stroma are indicated in the transmitted-light section. Nuclei were stained with DAPI and F-actin with phalloidin; MYO7A and G-actin were stained with specific antibodies. Magnified panels on right show that while both hair cells and supporting cells have JLA20 labeling, supporting-cell labeling is more intense. Panel full widths: A, 839 µm; B-C, 125 µm.

https://doi.org/10.7554/eLife.50777.014
Figure 3—figure supplement 5
OCM localization with anti-PV3 antibody.

The sensory epithelium and the stroma are indicated in the transmitted-light section. Nuclei were stained with DAPI and F-actin with phalloidin; OTOF and OCM were stained with specific antibodies. Magnified panels on right show that OCM labeling is stronger in the striola than the extrastriola, but that occasional extrastriola cells label strongly. Panel full widths: A, 946 µm; B-C, 125 µm.

https://doi.org/10.7554/eLife.50777.015
Figure 3—figure supplement 6
Identification of striola and extrastriola regions.

The sensory epithelium and the stroma are indicated in the transmitted-light section. Nuclei were stained with DAPI and F-actin with phalloidin; SOX2, MYO7A and tubulin beta-3 (TUJ1) were stained with specific antibodies. The striolar region harbors maturing/mature type I hair cells (MYO7A+/SOX2-) with calyx type terminals (TUJ1+). Extrastriolar regions and the striola harbor type II hair cells (MYO7A+/SOX2+), which are innervated by boutons (TUJ1+). Panel full widths: A, 982 µm; B-C, 125 µm.

https://doi.org/10.7554/eLife.50777.016
Pseudotemporal ordering of single utricle cells based on proteomics measurements.

(A) Relationship between variance and mean expression, distinguishes proteins or protein groups with low variance (blue) or high variance (salmon). (B) First three components of CellTrails' spectral embedding, with FM1-43low (square, gray) and FM1-43high (circle, green) cells indicated. (C) First three components of CellTrails' spectral embedding with cells colorized by the inferred pseudotime. (D) Chronological ordering of single cells as a function of pseudotime shows that cell ordering correlates with the FM1-43 uptake gradient. (E) Scaled expression dynamics over pseudotime for all analyzed proteins or protein groups. A cubic smoothing spline with four degrees of freedom was fit on the rolling mean for each protein. Cell density bar underneath the heat map shows the density of cells along the pseudotime axis. Heat map and cell density scale is shown below. (F) Absolute expression dynamics of log2 niBAQ expression levels as a function of pseudotime for various proteins. Blue line is expression fit; circle is the rolling mean for each protein.

https://doi.org/10.7554/eLife.50777.018
Developmental trajectory identified from single utricle cell RNA-seq measurements.

(A) CellTrails identifies nine distinct states (cellular subgroups). Shown are 328 points representing single utricle cells projected into two-dimensional space using CellTrails t-distributed stochastic neighbor embedding (tSNE). Cells are colored by state affiliation. Two states (S8-9) were classified as stromal cells and excluded from this study based on the lack of TECTA expression and the high levels of TMSB4X expression. (B) CellTrails trail map of 254 single chicken utricle cells reveals a bifurcating trajectory. (CATOH1 peaks before the main bifurcation of the right major branches. CellTrails map shows that MYO7A-expressing hair cells are located downstream of the ATOH1 peak on the right half of the trajectory map. (D) Projection of medial and lateral cell origin metadata into the trail map. Cells from the lateral side accumulate along the lower-right trajectory whereas cells from both halves are located along the upper-right trajectory. (E) Predicted developmental extrastriolar (TrES*, TrES), and striolar (TrS) hair cell trajectories. (F) LOXHD1, ATP2B2, TMC2, TNNC2, MYO3A, and OCM expression levels are associated with the lower-right lateral striolar (TrS) branch. (G) CellTrails maps showing high expression of SYN3, SKOR2, CALB2, and TMC1 along the upper-left medial extrastriolar (TrES*, TrES) branch. (H) Expression of supporting cell marker genes TECTA, OTOA, TMSB4X and AGR3 defines the location of the progenitor (supporting) cell population along the left major branch. (I) Expression of CRABP1 and GSTO is associated with the extrastriolar trajectory* (TrES*, see also Figure 3G, high CRABP1 expression extrastriolar hair cells). (J) AK1 and GPX2 are enriched in the striolar trajectory (TrS). (K) ACTB expression decreases and ACTG1 expression increases while hair cells develop.

https://doi.org/10.7554/eLife.50777.019
Figure 5—source data 1

CellTrails analysis of single-cell RNA-seq data.

Excel file including: Tab S1A: Single-cell RNA-seq measurements. Count matrix after QC and Normalization (ScNorm) of 186 genes and 328 chicken utricle single cells. Rows display single cells and columns display genes. Non-detected signals were set to 0. Tab S1B: tSNE plots and CellTrails maps. Listed are tSNE plots and CellTrails maps for each gene. The first column lists the gene symbol names, the second column shows the tSNE plots, the third column shows the CellTrails maps with the raw expression values, the fourth column shows the CellTrails maps with smoothed expression values, and the fifth column shows the CellTrails maps with the topographical expression surface. Tab S1C: Inferred expression dynamics. Shown is individual pseudotime gene expression along the extrastriolar (TrES, TrES*) and striolar (TrS) trajectory.

https://doi.org/10.7554/eLife.50777.020

Tables

Table 1
Summary statistics with confidence intervals for Figure 2C.
https://doi.org/10.7554/eLife.50777.017
95% Confidence interval
ComparisonEstimateStd. errordft-valueLower boundUpper boundp-value
ACTG1 FM-high – ACTG1 FM-low−0.0170.00922.3−1.830−0.0360.0020.081
ACTG1 FM-high – TMSB4X FM-high0.0360.00812.04.6070.0190.0540.001
ACTG1 FM-low - TMSB4X FM-low0.0040.00812.00.451−0.0140.0210.66
TMSB4X FM-low - TMSB4X FM-low−0.0500.00922.3−5.356−0.069−0.031<0.001
Key resources table
Reagent type
(species) or
resource
DesignationSource or referenceIdentifiersAdditional
information
Biological sample (Gallus gallus)Embryonic day 15 utricleeggs from Texas A and M University Poultry Science Departmentn/aFreshly isolated from Gallus gallus
Chemical compound, drugFM1-43FXThermo FisherCat# F3535510 µM
Chemical compound, drugSYTOX Red Dead Cell StainThermo FisherCat# S348591:1000 (final 5 nM)
Chemical compound, drugthermolysin from geobacillus stearothermophilusSigma-AldrichCat# T79020.5 mg/ml
Chemical compound, drugAccutaseInnovative Cell TechnologiesCat# AT104full strength
Chemical compound, drugn-dodecyl β-D-maltosideSigma-AldrichCat# D46410.1% (w/v)
Chemical compound, drugtrypsinPromegaCat# V528010 ng/µl
Chemical compound, drugLys-CPromegaCat# V167110 ng/µl
Chemical compound, drugDAPIThermo FisherCat# D13061 µg/ml
Chemical compound, drugAlexa Fluor 488-conjugated phalloidinThermo FisherCat# A123791:1000
Antibodyrabbit polyclonal anti-TMSB4XProteintechCat# 19850–1-AP, RRID: AB_106424371:250
Antibodyrabbit polyclonal anti-AGR3ProteintechCat# 11967–1-AP, RRID: n/a1:250
Antibodyrabbit polyclonal anti-CRABP1ProteintechCat# 12588–1-AP, RRID: AB_22922711:250
Antibodymouse monoclonal anti-G-actinDevelopmental Studies Hybridoma BankCat# JLA20, RRID: AB_5280681:250
Antibodymouse monoclonal anti-otoferlinDevelopmental Studies Hybridoma BankCat# HCS-1, RRID: AB_108042961:250
Antibodygoat polyclonal anti-SOX2Santa Cruz BiotechnologyCat# sc-17320, RRID: AB_22866841:100
Antibodymouse monoclonal anti-tubulin beta-3BioLegendCat# TUJ1, RRID: AB_23137731:250
Antibodyrabbit polyclonal anti-parvalbumin-3/oncomodulinHeller laboratoryn/a1:1000
Antibodyrabbit polyclonal anti-MYO7AProteus BiosciencesCat# 25–6790, RRID: AB_23148381:1000
AntibodyAlexa Fluor 546 donkey anti-rabbit polyclonalThermo FisherCat# A10040, RRID: AB_25340161:250
AntibodyAlexa Fluor 647 donkey anti-mouse polyclonalThermo FisherCat# A31571, RRID: AB_1625421:100
AntibodyAlexa Fluor 488
donkey anti-goat
polyclonal
Thermo FisherCat# A11055, RRID: AB_25341021:250
Commercial assay or kitSMARTscribeClontechCat# 639538
Commercial
assay or kit
Hifi HotStart ReadyMix (2X)Kapa BiosystemsCat# KK2602
Software, algorithmMaxQuantCox lab, Max Planck Institute of Biochemistryhttps://www.maxquant.org
Software, algorithmFIJI (ImageJ)n/ahttp://fiji.sc/
Software, algorithmRThe R Project for Statistical Computinghttps://www.r-project.org/
Software, algorithmlimma R packageBioconductorDOI: 10.18129/B9.bioc.limma
Software, algorithmsva R packageBioconductorDOI: 10.18129/B9.bioc.sva
Software, algorithmCellTrails R packageBioconductorDOI: 10.18129/B9.bioc.CellTrails
OtherMedium 199Thermo FisherCat# 12350039
OtherSPHERO Drop Delay Calibration ParticlesSpherotechCat# DDCP-70–2
OthernanoPOTS chipsCustom builtn/a
Table 2
Antibodies used.
https://doi.org/10.7554/eLife.50777.021
AntibodyDilutionSupplierCatalog #Validation
rabbit anti-TMSB4X1:250Proteintech19850–1-AP(Zhou et al., 2013; Li et al., 2018)
rabbit anti-AGR3 1:2501:250Proteintech11967–1-APFrom manufacturer’s website: correct-sized band by protein immunoblot in SKOV-3 cells, MCF-7 cells (chicken protein 88% identical to mouse)
rabbit anti-CRABP1 1:2501:250Proteintech12588–1-APFrom manufacturer’s website: correct-sized band by protein immunoblot in human spleen tissue, transfected HEK-293 cells (chicken protein 95% identical to human)
mouse anti-G-actin 1:2501:250Developmental Studies Hybridoma BankJLA20(Lin, 1981)
mouse anti-otoferlin 1:2501:250Developmental Studies Hybridoma BankHCS-1(Goodyear et al., 2010) (chicken protein 73% identical to mouse)
goat anti-SOX2 1:1001:100Santa Cruz Biotechnologysc-17320From manufacturer’s website: ‘recommended for detection of Sox-2 of mouse, rat, human and avian origin by WB, IP, IF, IHC(P) and ELISA’
mouse anti-tubulin beta-3 TUJ1. 1:2501:250BioLegend801202(Lee et al., 1990)
rabbit anti-parvalbumin3/oncomodulin1:1000Heller lab16910(Heller et al., 2002)
rabbit anti-MYO7A1:1000Proteus Biosciences25–6790(Morgan et al., 2016)
Table 3
Genes included in scRNA-seq CellTrails analysis.
https://doi.org/10.7554/eLife.50777.022
ABCA5(WHRN)(NSG2) PLSCR5TMSB4X
ACO1 DFNB59 LOC423919 PNPT1 TNNC2
ACTB(PJVK)(SHTN1) PODXL2 TOLLIP
ACTG1 DIAPH1 LOC772075 POU4F3 TPM1
ACTN1 DNM1(XIRP2) PPP1R14D TPM3
ADGRV1 DPF3 LOXHD1 PRPS1 TPRN
AGR3 DRGX MAP1A PTPRQ TRIOBP
AK1 EFCAB6 MAPK10 PTPRT TTLL12
AKAP5 EFR3A MCOLN3 PTPRZ1 TUBA3E
ANKRD24 ELMOD1 MPRIP RAB26 TUBAL3
APPL2 EML1 MSN RDX TUBB2B
ARF1 EPS8L2 MSRB3 RFX8 TUBB6
ARF4 ESPN MYH9 RPS6KA2 TWF2
ARHGAP17 ESPNL MYO15A RPS6KA5 USH1C
ARMC4 EZR MYO1C RSPH1 USH1G
ATOH1 FOXJ1 MYO1H RSPH9 USH2A
ATP2B1 FSCN1 MYO3A SCG3
ATP2B2 FSCN2 MYO3B SERPINB6
ATP2B4 GALNT9 MYO6 SGCB
ATP6V1B2 GAPDH MYO7A SGCG
ATP6V1E1 GDI2 NFATC1 SGIP1
ATP8B1 GNAI1 NMNAT2 SH3GLB2
B3GNTL1 GNAI2 NPEPPS SKOR2
BAIAP2L2 GNAI3 OCM SLC17A8
BRSK2 GNAL OSBP2 SLC8A1
CAB39L GNAS OSBPL11 SLC9A3R2
CACNA2D2 GNG4 OSBPL1A SMPX
CALB2 GPSM2 OTOA SPAG1
CAPZA1 GPX2 OTOF SPTAN1
CAPZA2 GRXCR1 PAICS STARD10
CAPZB GRXCR2 PAK1 STXBP1
CCDC50 GSTO1 PAK2 SYN3
CDH23 HSF5 PAK3 TECTA
CHRNA10 HYDIN PCDH15 TECTB
CHRNA9 IRX2 PDCD6IP TMC1
CIB2 KIAA1211L PDK4 TMC2
CKB(KIAA1211) PDZD7 TMC5
CLIC5 KIAA1549 PGM2L1 TMCC2
CORO2B KIF1A PHF21B TMEM117
CRABP1 KLHDC7A PI4KA TMEM255B
CSNK2A1 LCP1 PITPNA TMEM30A
CTH LHFPL5 PITPNB TMIE
CUL1 LHX3 PLS1 TMPRSS3
DFNB31 LOC416212 PLS3 TMPRSS7
ABCA5(WHRN)(NSG2) PLSCR5TMSB4X
ACO1 DFNB59 LOC423919 PNPT1 TNNC2
ACTB(PJVK)(SHTN1) PODXL2 TOLLIP
ACTG1 DIAPH1 LOC772075 POU4F3 TPM1
ACTN1 DNM1(XIRP2) PPP1R14D TPM3
ADGRV1 DPF3 LOXHD1 PRPS1 TPRN
AGR3 DRGX MAP1A PTPRQ TRIOBP
AK1 EFCAB6 MAPK10 PTPRT TTLL12
AKAP5 EFR3A MCOLN3 PTPRZ1 TUBA3E
ANKRD24 ELMOD1 MPRIP RAB26 TUBAL3
APPL2 EML1 MSN RDX TUBB2B
ARF1 EPS8L2 MSRB3 RFX8 TUBB6
ARF4 ESPN MYH9 RPS6KA2 TWF2
ARHGAP17 ESPNL MYO15A RPS6KA5 USH1C
ARMC4 EZR MYO1C RSPH1 USH1G
ATOH1 FOXJ1 MYO1H RSPH9 USH2A
ATP2B1 FSCN1 MYO3A SCG3
ATP2B2 FSCN2 MYO3B SERPINB6
ATP2B4 GALNT9 MYO6 SGCB
ATP6V1B2 GAPDH MYO7A SGCG
ATP6V1E1 GDI2 NFATC1 SGIP1
ATP8B1 GNAI1 NMNAT2 SH3GLB2
B3GNTL1 GNAI2 NPEPPS SKOR2
BAIAP2L2 GNAI3 OCM SLC17A8
BRSK2 GNAL OSBP2 SLC8A1
CAB39L GNAS OSBPL11 SLC9A3R2
CACNA2D2 GNG4 OSBPL1A SMPX
CALB2 GPSM2 OTOA SPAG1
CAPZA1 GPX2 OTOF SPTAN1
CAPZA2 GRXCR1 PAICS STARD10
CAPZB GRXCR2 PAK1 STXBP1
CCDC50 GSTO1 PAK2 SYN3
CDH23 HSF5 PAK3 TECTA
CHRNA10 HYDIN PCDH15 TECTB
CHRNA9 IRX2 PDCD6IP TMC1
CIB2 KIAA1211L PDK4 TMC2
CKB(KIAA1211) PDZD7 TMC5
CLIC5 KIAA1549 PGM2L1 TMCC2
CORO2B KIF1A PHF21B TMEM117
CRABP1 KLHDC7A PI4KA TMEM255B
CSNK2A1 LCP1 PITPNA TMEM30A
CTH LHFPL5 PITPNB TMIE
CUL1 LHX3 PLS1 TMPRSS3
DFNB31 LOC416212 PLS3 TMPRSS7

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Zhu
  2. Mirko Scheibinger
  3. Daniel Christian Ellwanger
  4. Jocelyn F Krey
  5. Dongseok Choi
  6. Ryan T Kelly
  7. Stefan Heller
  8. Peter G Barr-Gillespie
(2019)
Single-cell proteomics reveals changes in expression during hair-cell development
eLife 8:e50777.
https://doi.org/10.7554/eLife.50777