Single-cell proteomics reveals changes in expression during hair-cell development

  1. Ying Zhu
  2. Mirko Scheibinger
  3. Daniel Christian Ellwanger
  4. Jocelyn F Krey
  5. Dongseok Choi
  6. Ryan T Kelly
  7. Stefan Heller
  8. Peter G Barr-Gillespie  Is a corresponding author
  1. Pacific Northwest National Laboratory, United States
  2. Stanford University, United States
  3. Oregon Health and Science University, United States
  4. Brigham Young University, United States

Abstract

Hearing and balance rely on small sensory hair cells that reside in the inner ear. To explore dynamic changes in the abundant proteins present in differentiating hair cells, we used nanoliter-scale shotgun mass spectrometry of single cells, each ~1 picoliter, from utricles of embryonic day 15 chickens. We identified unique constellations of proteins or protein groups from presumptive hair cells and from progenitor cells. The single-cell proteomes enabled the de novo reconstruction of a developmental trajectory using protein expression levels, revealing proteins that greatly increased in expression during differentiation of hair cells (e.g., OCM, CRABP1, GPX2, AK1, GSTO1) and those that decreased during differentiation (e.g., TMSB4X, AGR3). Complementary single-cell transcriptome profiling showed corresponding changes in mRNA during maturation of hair cells. Single-cell proteomics data thus can be mined to reveal features of cellular development that may be missed with transcriptomics.

Data availability

The mass spectrometry proteomics data, including raw data from the mass spectrometry runs, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014256. The analyzed data are reported in Figure 1-source data 1. The analyzed single-cell RNA-seq data are reported in Figure 5-source data 1. The complete analysis of the single-cell RNA-seq will be reported elsewhere

The following data sets were generated

Article and author information

Author details

  1. Ying Zhu

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    No competing interests declared.
  2. Mirko Scheibinger

    Department of Otolaryngology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Daniel Christian Ellwanger

    Department of Otolaryngology, Stanford University, Stanford, United States
    Competing interests
    Daniel Christian Ellwanger, is affiliated with Amgen Inc.. The author has no other competing interests to declare.
  4. Jocelyn F Krey

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  5. Dongseok Choi

    OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  6. Ryan T Kelly

    Department of Chemistry and Biochemistry, Brigham Young University, Provo, United States
    Competing interests
    No competing interests declared.
  7. Stefan Heller

    Department of Otolaryngology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Peter G Barr-Gillespie

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    gillespp@ohsu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9787-5860

Funding

National Institutes of Health (R01 DC011034)

  • Peter G Barr-Gillespie

National Institutes of Health (R01 DC015201)

  • Stefan Heller

National Institutes of Health (R33 CA225248)

  • Ryan T Kelly

Laboratory Directed Research and Development Program at PNNL (Earth & Biological Sciences Directorate Mission Seed)

  • Ying Zhu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew W Kelley, National Institute on Deafness and Other Communication Disorders, United States

Version history

  1. Received: August 2, 2019
  2. Accepted: November 1, 2019
  3. Accepted Manuscript published: November 4, 2019 (version 1)
  4. Version of Record published: November 14, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 7,755
    Page views
  • 1,164
    Downloads
  • 66
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Zhu
  2. Mirko Scheibinger
  3. Daniel Christian Ellwanger
  4. Jocelyn F Krey
  5. Dongseok Choi
  6. Ryan T Kelly
  7. Stefan Heller
  8. Peter G Barr-Gillespie
(2019)
Single-cell proteomics reveals changes in expression during hair-cell development
eLife 8:e50777.
https://doi.org/10.7554/eLife.50777

Share this article

https://doi.org/10.7554/eLife.50777

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.