Endogenous siRNAs promote proteostasis and longevity in germline less C. elegans

  1. Moran Cohen-Berkman
  2. Reut Dudkevich
  3. Shani Ben-Hamo
  4. Alla Fishman
  5. Yehuda Salzberg
  6. Hiba Waldman Ben-Asher
  7. Ayelet T Lamm
  8. Sivan Henis-Korenblit  Is a corresponding author
  1. Bar-Ilan University, Israel
  2. Technion - Israel Institute of Technology, Israel
  3. Weizmann Institute of Science, Israel

Abstract

How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in C. elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.

Data availability

Raw and processed high-throughput sequencing data and microarray data generated and/or analyzed during this study were deposited under the Gene Expression Omnibus, with accession number GSE122457 and GSE128935.All other data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Moran Cohen-Berkman

    Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Reut Dudkevich

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Shani Ben-Hamo

    Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Alla Fishman

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Yehuda Salzberg

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Hiba Waldman Ben-Asher

    Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Ayelet T Lamm

    Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Sivan Henis-Korenblit

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    For correspondence
    sivan.korenblit@biu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8023-6336

Funding

Israel Science Foundation (689/19)

  • Sivan Henis-Korenblit

Israel Science Foundation (927/18)

  • Ayelet T Lamm

Israel Ministry of Science, Technology and Space (3-12066)

  • Sivan Henis-Korenblit

Israeli Centers for Research Excellence (1796/12)

  • Ayelet T Lamm

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Cohen-Berkman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,786
    views
  • 370
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moran Cohen-Berkman
  2. Reut Dudkevich
  3. Shani Ben-Hamo
  4. Alla Fishman
  5. Yehuda Salzberg
  6. Hiba Waldman Ben-Asher
  7. Ayelet T Lamm
  8. Sivan Henis-Korenblit
(2020)
Endogenous siRNAs promote proteostasis and longevity in germline less C. elegans
eLife 9:e50896.
https://doi.org/10.7554/eLife.50896

Share this article

https://doi.org/10.7554/eLife.50896

Further reading

    1. Cell Biology
    Xue Yang, Chuyi Han ... Fanyuan Yu
    Research Article

    Platelet-derived growth factor receptor alpha (PDGFR-α) activity is crucial in the process of dental and periodontal mesenchyme regeneration facilitated by autologous platelet concentrates (APCs), such as platelet-rich fibrin (PRF), platelet-rich plasma (PRP) and concentrated growth factors (CGF), as well as by recombinant PDGF drugs. However, it is largely unclear about the physiological patterns and cellular fate determinations of PDGFR-α+ cells in the homeostasis maintaining of adult dental and periodontal mesenchyme. We previously identified NFATc1 expressing PDGFR-α+ cells as a subtype of skeletal stem cells (SSCs) in limb bone in mice, but their roles in dental and periodontal remain unexplored. To this end, in the present study we investigated the spatiotemporal atlas of NFATc1+ and PDGFR-α+ cells residing in dental and periodontal mesenchyme in mice, their capacity for progeny cell generation, and their inclusive, exclusive and hierarchical relations in homeostasis. We utilized CRISPR/Cas9-mediated gene editing to generate two dual recombination systems, which were Cre-loxP and Dre-rox combined intersectional and exclusive reporters respectively, to concurrently demonstrate the inclusive, exclusive, and hierarchical distributions of NFATc1+ and PDGFR-α+ cells and their lineage commitment. By employing the state-of-the-art transgenic lineage tracing techniques in cooperating with tissue clearing-based advanced imaging and three-dimensional slices reconstruction, we systematically mapped the distribution atlas of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme and tracked their in vivo fate trajectories in mice. Our findings extend current understanding of NFATc1+ and PDGFR-α+ cells in dental and periodontal mesenchyme homeostasis, and furthermore enhance our comprehension of their sustained therapeutic impact for future clinical investigations.

    1. Cell Biology
    2. Neuroscience
    Josse Poppinga, Nolan J Barrett ... Jan RT van Weering
    Research Article

    Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.