Male meiotic spindle features that efficiently segregate paired and lagging chromosomes

  1. Gunar Fabig  Is a corresponding author
  2. Robert Kiewisz
  3. Norbert Lindow
  4. James A Powers
  5. Vanessa Cota
  6. Luis J Quintanilla
  7. Jan Brugués
  8. Steffen Prohaska
  9. Diana S Chu
  10. Thomas Müller-Reichert  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. Zuse Institute Berlin, Germany
  3. Indiana University, United States
  4. San Francisco State University, United States
  5. Max Planck Institute, Germany

Abstract

Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a 'tug of war' reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.

Data availability

Data have been uploaded to the TU Dresden Open Access Repository and Archive system (OpARA) and are available as open access: http://dx.doi.org/10.25532/OPARA-56

The following data sets were generated

Article and author information

Author details

  1. Gunar Fabig

    Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    For correspondence
    gunar.fabig@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3017-0978
  2. Robert Kiewisz

    Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2733-4978
  3. Norbert Lindow

    Visualization and Data Analysis, Zuse Institute Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. James A Powers

    Light Microscopy Imaging Center, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vanessa Cota

    Department of Biology, San Francisco State University, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luis J Quintanilla

    Department of Biology, San Francisco State University, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jan Brugués

    Molecular Cell Biology and Genetics, Max Planck Institute, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Steffen Prohaska

    Visualization and Data Analysis, Zuse Institute Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Diana S Chu

    Department of Biology, San Francisco State University, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Thomas Müller-Reichert

    Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    For correspondence
    mueller-reichert@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0203-1436

Funding

Deutsche Forschungsgemeinschaft (MU 1423/10-1)

  • Gunar Fabig
  • Thomas Müller-Reichert

Horizon 2020 Framework Programme (No. 675737)

  • Robert Kiewisz
  • Thomas Müller-Reichert

National Institutes of Health (R03 HD093990-01A1)

  • Vanessa Cota
  • Diana S Chu

National Science Foundation (RUI-1817611,DBI-1548297)

  • Vanessa Cota
  • Diana S Chu

National Institutes of Health (NIH1S10OD024988-01)

  • James A Powers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Publication history

  1. Received: August 9, 2019
  2. Accepted: March 8, 2020
  3. Accepted Manuscript published: March 9, 2020 (version 1)
  4. Accepted Manuscript updated: March 10, 2020 (version 2)
  5. Version of Record published: March 27, 2020 (version 3)
  6. Version of Record updated: April 1, 2020 (version 4)

Copyright

© 2020, Fabig et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,264
    Page views
  • 344
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gunar Fabig
  2. Robert Kiewisz
  3. Norbert Lindow
  4. James A Powers
  5. Vanessa Cota
  6. Luis J Quintanilla
  7. Jan Brugués
  8. Steffen Prohaska
  9. Diana S Chu
  10. Thomas Müller-Reichert
(2020)
Male meiotic spindle features that efficiently segregate paired and lagging chromosomes
eLife 9:e50988.
https://doi.org/10.7554/eLife.50988

Further reading

    1. Cancer Biology
    2. Cell Biology
    Elena Tomas Bort, Megan Daisy Joseph ... Richard Philip Grose
    Research Article

    Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response and immune function. Analysing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signalling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.

    1. Cell Biology
    Enric Gutiérrez-Martínez, Susana Benet Garrab ... Maria F Garcia-Parajo
    Research Article

    The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DC) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.