Male meiotic spindle features that efficiently segregate paired and lagging chromosomes
Abstract
Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a 'tug of war' reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.
Data availability
Data have been uploaded to the TU Dresden Open Access Repository and Archive system (OpARA) and are available as open access: http://dx.doi.org/10.25532/OPARA-56
-
Supplemental data for the publicationOpARA, doi:10.25532/OPARA-56.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (MU 1423/10-1)
- Gunar Fabig
- Thomas Müller-Reichert
Horizon 2020 Framework Programme (No. 675737)
- Robert Kiewisz
- Thomas Müller-Reichert
National Institutes of Health (R03 HD093990-01A1)
- Vanessa Cota
- Diana S Chu
National Science Foundation (RUI-1817611,DBI-1548297)
- Vanessa Cota
- Diana S Chu
National Institutes of Health (NIH1S10OD024988-01)
- James A Powers
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Yukiko M Yamashita, University of Michigan, United States
Publication history
- Received: August 9, 2019
- Accepted: March 8, 2020
- Accepted Manuscript published: March 9, 2020 (version 1)
- Accepted Manuscript updated: March 10, 2020 (version 2)
- Version of Record published: March 27, 2020 (version 3)
- Version of Record updated: April 1, 2020 (version 4)
Copyright
© 2020, Fabig et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,960
- Page views
-
- 324
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Cell Biology
Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to phosphoinositide lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and bound tubulin dimers (kD = 1.89 µM) to impact microtubule dynamics. In PFN1-deficient mammalian cells, Halo-PFN1 or mApple-PFN1 (mAp-PEN1) restored morphological and cytoskeletal functions. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.
-
- Cell Biology
Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY-motif containing adaptor proteins. Several Arrestin-Related Trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63 linked di-Ubiquitination by Rsp5. This modification enhances the PM recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the Pombe orthologs of Rsp5 and Art1, Pub1 and Any1. Further, we discover that the HECT domain exosite protects the K63 linked di-Ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment and activity of Rsp5 for the turnover of membrane proteins.