Estimates of the global burden of Japanese Encephalitis and the impact of vaccination from 2000-2015

  1. Tran Minh Quan
  2. Tran Thi Nhu Thao
  3. Nguyen Manh Duy
  4. Tran Minh Nhat
  5. Hannah Clapham  Is a corresponding author
  1. University of Notre Dame, United States
  2. Oxford University Clinical Research Unit, Wellcome Trust Asia Program, Viet Nam

Abstract

Japanese encephalitis (JE) is a mosquito-borne disease, known for its high mortality and disability rate among symptomatic cases. Many effective vaccines are available for JE, and the use of a recently developed and inexpensive vaccine, SA 14-14-2, has been increasing over the recent years particularly with Gavi support. Estimates of the local burden and the past impact of vaccination are therefore increasingly needed, but difficult due to the limitations of JE surveillance. In this study, we implemented a mathematical modelling method (catalytic model) combined with age-stratifed case data from our systematic review which can overcome some of these limitations. We estimate in 2015 JEV infections caused 100,308 JE cases (95%CI: 61,720 - 157,522) and 25,125 deaths (95%CI: 14,550 - 46,031) globally, and that between 2000 and 2015 307,774 JE cases (95%CI: 167,442- 509,583) were averted due to vaccination globally. Our results highlight areas that could have the greatest benefit from starting vaccination or from scaling up existing programs and will be of use to support local and international policymakers in making vaccine allocation decisions.

Data availability

This study conducted a literature review and collated all data on age-stratified JE cases from these papers. The full list of these papers and the data extracted is available in the supplement.The code and data is available here: https://github.com/tranquanc123/JE_burden_estimates.

Article and author information

Author details

  1. Tran Minh Quan

    Biological Science Department, University of Notre Dame, South Bend, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3337-161X
  2. Tran Thi Nhu Thao

    Oxford University Clinical Research Unit, Wellcome Trust Asia Program, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  3. Nguyen Manh Duy

    Oxford University Clinical Research Unit, Wellcome Trust Asia Program, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
  4. Tran Minh Nhat

    Oxford University Clinical Research Unit, Wellcome Trust Asia Program, Ho Chi Minh City, Viet Nam
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9500-8341
  5. Hannah Clapham

    Oxford University Clinical Research Unit, Wellcome Trust Asia Program, Ho Chi Minh City, Viet Nam
    For correspondence
    hannah.clapham@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2531-161X

Funding

Bill and Melinda Gates Foundation and Gavi (Vaccine Impact Modelling Consortium)

  • Tran Minh Quan
  • Tran Thi Nhu Thao
  • Nguyen Manh Duy
  • Tran Minh Nhat

Wellcome Trust (089276/B/09/7)

  • Hannah Clapham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Eduardo Franco, McGill University, Canada

Version history

  1. Received: August 12, 2019
  2. Accepted: May 17, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Version of Record published: June 9, 2020 (version 2)

Copyright

© 2020, Quan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,275
    views
  • 405
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tran Minh Quan
  2. Tran Thi Nhu Thao
  3. Nguyen Manh Duy
  4. Tran Minh Nhat
  5. Hannah Clapham
(2020)
Estimates of the global burden of Japanese Encephalitis and the impact of vaccination from 2000-2015
eLife 9:e51027.
https://doi.org/10.7554/eLife.51027

Share this article

https://doi.org/10.7554/eLife.51027

Further reading

    1. Epidemiology and Global Health
    Caroline Krag, Maria Saur Svane ... Tinne Laurberg
    Research Article

    Background:

    Comorbidity with type 2 diabetes (T2D) results in worsening of cancer-specific and overall prognosis in colorectal cancer (CRC) patients. The treatment of CRC per se may be diabetogenic. We assessed the impact of different types of surgical cancer resections and oncological treatment on risk of T2D development in CRC patients.

    Methods:

    We developed a population-based cohort study including all Danish CRC patients, who had undergone CRC surgery between 2001 and 2018. Using nationwide register data, we identified and followed patients from date of surgery and until new onset of T2D, death, or end of follow-up.

    Results:

    In total, 46,373 CRC patients were included and divided into six groups according to type of surgical resection: 10,566 Right-No-Chemo (23%), 4645 Right-Chemo (10%), 10,151 Left-No-Chemo (22%), 5257 Left-Chemo (11%), 9618 Rectal-No-Chemo (21%), and 6136 Rectal-Chemo (13%). During 245,466 person-years of follow-up, 2556 patients developed T2D. The incidence rate (IR) of T2D was highest in the Left-Chemo group 11.3 (95% CI: 10.4–12.2) per 1000 person-years and lowest in the Rectal-No-Chemo group 9.6 (95% CI: 8.8–10.4). Between-group unadjusted hazard ratio (HR) of developing T2D was similar and non-significant. In the adjusted analysis, Rectal-No-Chemo was associated with lower T2D risk (HR 0.86 [95% CI 0.75–0.98]) compared to Right-No-Chemo.

    For all six groups, an increased level of body mass index (BMI) resulted in a nearly twofold increased risk of developing T2D.

    Conclusions:

    This study suggests that postoperative T2D screening should be prioritised in CRC survivors with overweight/obesity regardless of type of CRC treatment applied.

    Funding:

    The Novo Nordisk Foundation (NNF17SA0031406); TrygFonden (101390; 20045; 125132).

    1. Epidemiology and Global Health
    Xiaoxin Yu, Roger S Zoh ... David B Allison
    Review Article

    We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.