Aberrant calcium channel splicing drives defects in cortical differentiation in Timothy Syndrome

  1. Georgia Panagiotakos  Is a corresponding author
  2. Christos Haveles
  3. Arpana Arjun
  4. Ralitsa Petrova
  5. Anshul Rana
  6. Thomas Portmann
  7. Sergiu P Paşca
  8. Theo D Palmer
  9. Ricardo E Dolmetsch
  1. University of California, San Francisco, United States
  2. Stanford University School of Medicine, United States

Abstract

The syndromic autism spectrum disorder (ASD) Timothy Syndrome (TS) is caused by a point mutation in the alternatively spliced exon 8A of the calcium channel Cav1.2. Using mouse brain and human induced pluripotent stem cells (iPSCs), we provide evidence that the TS mutation prevents a normal developmental switch in Cav1.2 exon utilization, resulting in persistent expression of gain-of-function mutant channels during neuronal differentiation. In iPSC models, the TS mutation reduces the abundance of SATB2-expressing cortical projection neurons, leading to excess CTIP2+ neurons. We show that expression of TS-Cav1.2 channels in the embryonic mouse cortex recapitulates these differentiation defects in a calcium-dependent manner and that in utero Cav1.2 gain-and-loss of function reciprocally regulates the abundance of these neuronal populations. Our findings support the idea that disruption of developmentally-regulated calcium channel splicing patterns instructively alters differentiation in the developing cortex, providing important in vivo insights into the pathophysiology of a syndromic ASD.

Data availability

All data analyzed in this study have been included in the manuscript and supporting files and figures. Source data files have been provided for Figures 1 to 4, as well as Figure 1-figure supplement 1

Article and author information

Author details

  1. Georgia Panagiotakos

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    georgia.panagiotakos@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9444-2480
  2. Christos Haveles

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Arpana Arjun

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Ralitsa Petrova

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5586-6192
  5. Anshul Rana

    Graduate Program in Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Thomas Portmann

    Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    Thomas Portmann, is currently an employee of Neucyte, Inc.
  7. Sergiu P Paşca

    Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3216-3248
  8. Theo D Palmer

    Department of Neurosurgery, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  9. Ricardo E Dolmetsch

    Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    Ricardo E Dolmetsch, is currently an employee of Novartis Institutes for Biomedical Research.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2738-8338

Funding

National Institutes of Health (F31 MH090648 Predoctoral Fellowship)

  • Georgia Panagiotakos

National Institutes of Health (R01 MH096815)

  • Theo D Palmer

National Institutes of Health (Pioneer Award 5DP1OD3889)

  • Ricardo E Dolmetsch

Stanford University School of Medicine (Frances B Nelson Neuroscience Graduate Fellowship)

  • Georgia Panagiotakos

University of California, San Francisco (Program for Breakthrough Biomedical Research Sandler Foundation)

  • Georgia Panagiotakos

Howard Hughes Medical Institute (International Student Research Award)

  • Anshul Rana

Stanford University School of Medicine (Lucile P Markey Graduate Fellowship)

  • Anshul Rana

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Postdoctoral Fellowship PBSKP3-123434)

  • Thomas Portmann

Brain and Behavior Research Foundation (NARSAD Young Investigator Award)

  • Sergiu P Paşca

Simons Foundation (SFARI 206574)

  • Theo D Palmer

Blume Foundation

  • Theo D Palmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anita Bhattacharyya, University of Wisconsin, Madison, United States

Ethics

Animal experimentation: All animal experiments performed in this study were done so in accordance with the National Institutes of Health guidelines for the care and use of laboratory animals and protocols approved by the Stanford University and University of California, San Francisco (UCSF) Institutional Animal Care and Use Committees (Stanford protocol #13705 granted to the lab of Dr. Ricardo Dolmetsch, and UCSF protocol #AN109792 granted to the lab of Dr. Georgia Panagiotakos).

Human subjects: Collection of dermal fibroblasts from TS patients and unaffected control subjects, as well as iPSC generation was previously described (Pasca, et al. 2011). Experiments involving primary dermal fibroblasts and iPSCs from Timothy Syndrome patients and healthy control subjects were conducted at Stanford University under study protocols (#12481, #232, and #327) approved by the Institutional Review Board and Stem Cell Research Oversight (SCRO) committees of Stanford University after obtaining informed consent.

Version history

  1. Received: August 12, 2019
  2. Accepted: December 21, 2019
  3. Accepted Manuscript published: December 23, 2019 (version 1)
  4. Version of Record published: January 16, 2020 (version 2)

Copyright

© 2019, Panagiotakos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,103
    Page views
  • 501
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georgia Panagiotakos
  2. Christos Haveles
  3. Arpana Arjun
  4. Ralitsa Petrova
  5. Anshul Rana
  6. Thomas Portmann
  7. Sergiu P Paşca
  8. Theo D Palmer
  9. Ricardo E Dolmetsch
(2019)
Aberrant calcium channel splicing drives defects in cortical differentiation in Timothy Syndrome
eLife 8:e51037.
https://doi.org/10.7554/eLife.51037

Share this article

https://doi.org/10.7554/eLife.51037

Further reading

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800

    1. Neuroscience
    Lies Deceuninck, Fabian Kloosterman
    Research Article Updated

    Storing and accessing memories is required to successfully perform day-to-day tasks, for example for engaging in a meaningful conversation. Previous studies in both rodents and primates have correlated hippocampal cellular activity with behavioral expression of memory. A key role has been attributed to awake hippocampal replay – a sequential reactivation of neurons representing a trajectory through space. However, it is unclear if awake replay impacts immediate future behavior, gradually creates and stabilizes long-term memories over a long period of time (hours and longer), or enables the temporary memorization of relevant events at an intermediate time scale (seconds to minutes). In this study, we aimed to address the uncertainty around the timeframe of impact of awake replay by collecting causal evidence from behaving rats. We detected and disrupted sharp wave ripples (SWRs) - signatures of putative replay events - using electrical stimulation of the ventral hippocampal commissure in rats that were trained on three different spatial memory tasks. In each task, rats were required to memorize a new set of locations in each trial or each daily session. Interestingly, the rats performed equally well with or without SWR disruptions. These data suggest that awake SWRs - and potentially replay - does not affect the immediate behavior nor the temporary memorization of relevant events at a short timescale that are required to successfully perform the spatial tasks. Based on these results, we hypothesize that the impact of awake replay on memory and behavior is long-term and cumulative over time.