The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding

  1. Tatyana Bodrug
  2. Elizabeth M Wilson-Kubalek
  3. Stanley Nithianantham
  4. Alex F Thompson
  5. April Alfieri
  6. Ignas Gaska
  7. Jennifer Major
  8. Garrett Debs
  9. Sayaka Inagaki
  10. Pedro Gutierrez
  11. Larisa Gheber
  12. Richard J McKenney
  13. Charles Vaughn Sindelar
  14. Ronald Milligan
  15. Jason Stumpff
  16. Steven S Rosenfeld
  17. Scott T Forth
  18. Jawdat Al-Bassam  Is a corresponding author
  1. University of California, Davis, United States
  2. Scripps Research Institute, United States
  3. University of Vermont, United States
  4. Rensselaer Polytechnic Institute, United States
  5. Lerner Research Institute, Cleveland Clinic, United States
  6. Mayo Clinic, United States
  7. Yale University, United States
  8. Ben-Gurion University of the Negev, Israel
7 figures, 6 videos, 6 tables and 1 additional file

Figures

Figure 1 with 1 supplement
The kinesin-5 tail domain inhibits the motor domain MT-stimulated ATPase activity through stabilization of the MT bound nucleotide-free state.

(A) Top, domain organization for the kinesin-5 motors, Dm KLP61F and Hs FL-Eg5 consisting of conserved N-terminal motor domain, central BASS domain and C-terminal tail domain. Bottom, homotetrameric …

Figure 1—figure supplement 1
The kinesin-5 tail domain inhibits motor domain MT-stimulated ATPase activity through stabilization of ADP-bound and nucleotide-free state.

(A) Affinity co-purification of the KLP61F motor using the tail-StrepII construct in solution in the presence of three nucleotide states at 15 μmol mixture of motor+ tail-StrepII, which is …

Figure 2 with 1 supplement
Cryo-EM reveals the kinesin-5 tail engages the motor domain in the nucleotide-free state and stabilizes an open ATP active site.

(A-C) (A) Side view of 4.0 Å cryo-EM structure of Klp61F motor domain decorated MT unit in the AMPPNP state. A single kinesin motor-bound αβ-tubulin unit is shown. The segmented motor domain …

Figure 2—figure supplement 1
Cryo-EM reveals the kinesin-5 tail domain engages the motor domain directly through the α0-helix and stabilizes an open ATP active site.

(A) Top panel (I): Colores view of the Klp61F motor MT AMPPNP map, colored based on resolution scale. Bottom Panel (II): A gold standard Fourier Shell correlation (FSC) curve for the MT-decorated …

Figure 3 with 1 supplement
The kinesin-5 tail domain decreases velocity for homotetrameric motors along MTs.

(A) Human Eg5 constructs used in reconstitution studies. Top panel, domain organization of FL-Eg5-GFP. Second panel, domain organization of Eg5-Δtail-GFP with its tail domain deleted (residues …

Figure 3—figure supplement 1
The tail domain decreases the velocity of homotetrameric kinesin-5 motors along MTs.

(A) Right panel, Size exclusion chromatography (SEC) for recombinant FL-Eg5-GFP (red) and SDS-PAGE lane for peak fraction. Left panel, SEC for recombinant Eg5-Δtail-GFP and SDS-PAGE lane for peak …

Figure 4 with 1 supplement
The kinesin-5 tail is critical for the zippering of two sliding MTs via slow directional motility within the overlap zones.

(A) Left panel, scheme for TIRF microscopy reconstitution of MT sliding assays where FL-Eg5-GFP motors (green) recruit free MTs (orange) along single surface anchored AlexaF-633 and biotin labeled …

Figure 4—figure supplement 1
The kinesin-5 tail domain regulates the zippering of two sliding MTs via slow directional motility within the overlapping zones.

(A) Left side panels, wide field view of reconstituting 10–20 nM FL-Eg5-GFP mediated MT sliding events. Free MTs (yellow) can be seen recruited along anchored MTs (red) mediated by the FL-Eg5-GFP …

Kinesin-5 tail is critical in generating pushing forces during MT sliding.

(A) Scheme for MT sliding and optical trapping to measure the MT sliding pushing forces. Hilyte 649 labeled and biotins labeled MTs (purple) were attached to glass surfaces via neutravidin-biotin. …

Deletion of the kinesin-5 tail domain disrupts localization of the motor to the mitotic spindle in metaphase and anaphase.

(A) Western blot for mCherry (mCh, green) and GAPDH (red) indicating the expression of FL-Eg5-mCherry (FL Eg5-mCh, green) and Eg5-Δtail-mCherry (Eg5-Δtail-mCh, green) in HeLa cells. Results are …

A revised model for kinesin-5 tail-motor interaction during stepping motility and critical role for force generation during MT sliding.

(A) Model for kinesin-5 homotetramers with their motor and tail domains at each end of the bipolar minifilament (60 nm). The motors and tail domains at each end may form assemblies where the tail …

Videos

Video 1
Structural transition of the kinesin-5 motor domain from AMPPNP to nucleotide state and its effect on binding of the tail domain.

View of the kinesin-5 motor domain map with AMPPNP showing the motor domain model, transition to the motor nucleotide state map showing the site of binding for the tail domain density, and model for …

Video 2
Wide view of FL-Eg5-GFP and Eg5-Δtail-GFP (green) along single MTs (Red).
Video 3
close up views of FL-Eg5-GFP (left) and Eg5-Δtail-GFP (right) along single MTs at 25, 50 and 100 mM KCl conditions.
Video 4
left, close up views of FL-Eg5-GFP motors (green) mediating zippering of free MT (yellow) along anchored MT (red).

Right close up view of Eg5-Δtail-GFP motors crosslinking but unable to zipper MTs leading to scissoring defect.

Video 5
Top left, close up view of 1 nM FL-Eg5-GFP motor (green) spiking during free MT (yellow) sliding along anchored MT (red) mediated by 20 nM unlabeled FL-Eg5.

Top right, same event without the free MT revealing FL-Eg5-GFP motors along the anchored MT. Bottom left, close up view of 1 nM Eg5-Δtail-GFP motor (green) spiking during free MT (yellow) sliding …

Video 6
left, optical trapping of MT sliding experiments revealing the bead attached to sliding free MT (red) along anchored MT (purple) mediated by FL-Eg5-GFP motors.

Right, optical trapping of MT sliding experiments revealing the bead attached to sliding free MT (red) along anchored MT (purple) mediated by Eg5-Δtail-GFP motors.

Tables

Table 1
Steady kinetic parameters for MT-activated ATP hydrolysis.
ConstructSourceIonic Strengthkcat (sec−1)K0.5,MT (nM)
MotorDm KLP61F50 mM K Acetate7.1 ± 0.1680 ± 48
Motor + TailDm KLP61F50 mM K Acetate3.5 ± 0.5757 ± 327
Motor-Tail fusionDm KLP61F50 mM K Acetate3.3 ± 0.139 ± 11
MotorHs Eg520 mM KCl7.3 ± 0.2334 ± 14
Motor-Tail fusionHs Eg520 mM KCl3.4 ± 0.2158 ± 41
Motor + TailHs Eg520 mM KCl5.4 ± 0.3209 ± 56
MotorHs Eg550 mM K Acetate6.71 ± 0.73849 ± 800
Motor-Tail fusionHs Eg550 mM K Acetate5.87 ± 0.23391 ± 59
Table 2
Cryo-EM KLp61F motor and tail MT structures: collection and reconstruction.
Dm Klp61F motor-AMPPNP
(15 protofilaments)
Dm Klp61F- motor AMPPNP
(14 protofilaments)
Dm KLP61F motor-tail- nucleotide free
(15 protofilaments)
Dm Klp61F5
motor-tail-nucleotide free
(14-protofilaments)
Data collection
MicroscopeTitan Krios (FEI)Titan Krios (FEI)Titan Krios (FEI)Titan Krios (FEI)
Voltage (kV)300300300300
Ls22,500X22,500X22,500X22,500X
Cumulative exposure dose (e- Å−2)38384040
Exposure rate (e-/pixel/sec)7.97.98.38.3
DetectorK2 SummitK2 SummitK2 SummitK2 Summit
Pixel size (Å)*1.311.311.311.31
Defocus range (µm)0.3–3.780.7–3.780.19–5.120.19–5.12
Average defocus (m)1.751.751.861.86
Micrographs Used12601260955955
Total extracted helical segment (no.)73,45173,45144,08144,081
Refined helical segment (no.)21,00439,001949027,433
Reconstruction
Final helical segments (no.)21,00439,220949014,570
Symmetry imposedHPHPHPHP
Resolution (global) FSC 0.1434.24.44.24.3
Table 3
Cryo-EM refinement and Structure model statistics.
Dm-Klp61F motor AMPPNP-MTDm-Klp61F motor -Nucleotide free-MT
Data collection
Microscope/detectorTitan Krios/Gatan K2Titan Krios/Gatan K2
Magnification22,500x22,500x
Voltage (keV)300300
Dose rate (electrons/pixel/second)7.968.3
Pixel size (Å/pixel)1.311.31
Map resolution (Å)4.44.4
FSC threshold0.1430.143
Refinement
Model resolution cutoff (Å)4.44.4
FSC threshold0.1430.143
Protein residues11731174
Ligands3 (GTP/GDP/AMPPNP)2 (GTP/GDP)
Map CC0.80.78
B factor (Å)216208
R.M.S deviations
Bond lengths (Å)0.0030.006
Bond angles (°)0.531.14
Validation
All-atom clash score14.0511.71
MolProbity score2.521.9
Ramachandran plot
Favored (%)96.1994.65
Allowed (%)3.815.18
Outliers (%)0.000.17
Table 4
Motility parameters for FL-Eg5-GFP and Eg5-Δtail-GFP along single MTs.
FL-Eg5-GFPMotility (nm/s)Motor Fluorescence (Au)Run length (μm)
25 mM KCl7 ± 0.5 n = 1491080 ± 30 n = 100N/A
50 mM KCl26 ± 4 n = 200N/A13.7 ± 0.6
100 mM KCl26 ± 5 (60%)
41 ± 4 (40%) n = 149
2277 ± 100
4467 ± 630 n = 92
13.08 ± 0.6
Eg5-Δtail-GFP
25 mM KCl32 ± 5 n = 421960 ± 20 n = 95N/A
50 mM KCl33 ± 4 n = 420N/A14.9 ± 0.6
100 mM KCl36 ± 5 (85%)
55 ± 10 (15%) n = 149
1450 ± 3 n = 958.0 ± 0.6
Table 5
Motor motility and MT sliding parameters in vitro MT sliding assays.
Single motor velocities in relation to free MT sliding motility
FL-Eg5-GFPFree MT sliding motility (nm/s)Motility in sliding zones (nm/s)
25 mM KCl13.8 ± 1.0 n = 2613.9 ± 1.0 n = 32
50 mM KCl31.2 ± 1.2 n = 3322.7 ± 1.2 n = 71
Single motor motility within MT sliding zones
Eg5-Δtail-GFP motors (nm/s)FL-Eg5-GFP motors (nm/s)
Overlap Zone8.6 ± 0.9 n = 323.4 ± 0.3 n = 67
Single MT9.6 ± 0.8 n = 525.6 ± 0.3 n = 45
Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifierAdditional
Information
Chemical compound, drugATPSigmaA-2383Figures 1, 3, 4, 5 and 6
Chemical compound, drugADPSigmaA-2754Figure 1
Chemical compound, drugGTPSigmaG-8877Figures 1, 3, 4 and 5
Chemical compound, drugGMPCPPJenna BiosciencesNU-405LFigures 3, 4 and 5
Chemical compound, drugAMPPNPSigmaA-2647Figure 1
Chemical compound, drugPaclitaxelSigmaT7402Figure 1, 2
OtherStreptactin XTIBA-life sciences2-1003-100Figure 1, 3
Chemical compound, drugd-BiotinSigmaB-4501Figure 1, 3
Commercial assay or kitEnzCheck ATPase assay kitThermofisherE6646Figure 1
Chemical compound, drugNeutrAvidinThermofisher31000Figure 3, 4
Chemical compound, drugbiotin-PEG-3400-silaneLaysan BioBiotin-PEG-SIL-3400–500 mgFigure 3, 4
Chemical compound, drugPEG-2000-silaneLaysan BioMPEG-SIL-2000–1 gFigure 3, 4
Chemical compound, drugPluronic-F127SigmaP2443Figure 3, 4
Antibodyanti-GAPDH (mouse monoclonal)Thermo-Fisher437000Western blot: 1:10,000
Antibodyanti-mCherryAbcamab167453Western blot: 1:1000
Antibodyanti-mouse IRDye680 (goat polyclonal)LI-COR92568070Western blot: 1:10,000
Antibodyanti-rabbit IRDye800 (goat polyclonal)LI-COR92632211Western blot: 1:10,000
Antibodyanti-tubulin DM1α (mouse monoclonal)SigmaT9026Immunofluorescence: 1:750
Antibodyanti-mouse AlexaFluor 488 (goat polyclonal)InvitrogenA-11029Immunofluorescence: 1:500
Antibodyanti-mouse AlexaFluor 647 (goat polyclonal)InvitrogenA-21236Immunofluorescence: 1:500
Commercial assay or kitNucleofector Cell Line SE KitLonzaV4XC-1024
Commercial assay or kitPhusion Site-Directed MutagenesisThermo ScientificF541Figure 6
Chemical compound, drugBRD-9876Tocris Bioscience5454/50Figure 6
Chemical compound, drugMG-132SelleckchemS2619Figure 6
Peptide, recombinant proteinDrosophila KLP61FUniprotKB/Swiss-ProtP46863
Peptide, recombinant proteinHuman Eg5 (KIF11)UNiportKB/Swiss-ProtP52732
Peptide, recombinant proteinPorcine alpha tubulinUniprotKB/Swiss-ProtQ2XVP4
Peptide, recombinant proteinPorcine beta-tubulinUniprotKB/Swiss-ProtP02550
Cell line (E. coli)SoluBL21 bacterial expressionAmsBioC700200Figure 1, 2
Cell line (S. frugiperda)Spodoptera frugiperda-9 (Sf-9 cells)Thermofisher11496–015Figures 3, 4 and 5
Cell line (Homo sapiens)HeLa cell lineATCCCCL-2Figure 6
Recombinant DNA reagentpLIC_V2-Dm-KLp61F motor- H6(1–369)This paperFigure 1, 2
Recombinant DNA reagentpLIC_V2-Dm-KLP61F tail H6 (913–1016)This paperFigure 1, 2
Recombinant DNA reagentpLIC_V2-Dm KLP61F motor-tail fusion (residues 1–360, GSGSGS-linker, residues 913–1016)This paperFigure 1
Recombinant DNA reagentpET21a human Eg5 motor (residues 1–360)This paperSyntheticFigure 1
Recombinant DNA reagentpET21a human Eg5 tail (residues 920–1056)This paperSyntheticFigure 1
Recombinant DNA reagentpET21a human Eg5 motor-tail fusion (residues 1–360 GSGSGS-linker residues 920–1056)This paperSyntheticFigure 1
Recombinant DNA reagentpFastbac-human FL-Eg5-GFP (residues 1–1056-msfGFP-StrepII)This paperFigure 3
Recombinant DNA reagentpFastbac-human FL-Eg5 (residues 1–1056-StrepII)This paperFigure 3
Recombinant DNA reagentpFastbac-human Eg5-Δ-tail-GFP (residues 1–920-msfGFP-StrepII)This paperFigure 3
Recombinant DNA reagentpcDNA3.1 FL-Eg5-mCh (residues 1–1056, mCherry) siRNA resistant (T2124C, C2130T, G2133T, and G2136A)This paperFigure 6
Recombinant DNA reagentpcDNA3.1 Eg5-
Δtail-mCh (residues 1–920, mCherry) siRNA resistant (T2124C, C2130T, G2133T, and G2136A)
This paperFigure 6
Recombinant DNA reagentGFP-TubulinClonetechStock #61171Figure 6
Recombinant DNA reagentpCMV-mChPeris et al., 2009
Peptide, recombinant proteinαβ-tubulin purified from porcine brainsThis paper
Castoldi and Popov, 2003
Figures 1, 3 and 4
Software, algorithmImageLabBioradhttps://www.bio-rad.com/webroot/web/pdf/lsr/literature/10000076953.pdf
Software, algorithmFIJI (ImageJ)Schindelin et al., 2012https://fiji.sc
Software, algorithmPrismGraphPadhttps://www.graphpad.com/scientific-software/prism/
Software, algorithmMotioncor2Zheng et al., 2017https://emcore.ucsf.edu/ucsf-motioncor2
Software, algorithmCTFFIND4Rohou and Grigorieff, 2015https://grigoriefflab.umassmed.edu/ctf_estimation_ctffind_ctftilt
Software, algorithmEMAN2Tang et al., 2007http://blake.bcm.edu/emanwiki/EMAN2
Software, algorithmFREALIGNGrigorieff, 2007https://grigoriefflab.umassmed.edu/frealign
Software, algorithmB-factorGrigorieff, 2007https://grigoriefflab.umassmed.edu/bfactor
Software, algorithmUCSF-ChimeraPettersen et al., 2004https://www.cgl.ucsf.edu/chimera/
Software, algorithmCCP4 suiteCollaborative Computational Project, Number 4, 1994http://www.ccp4.ac.uk/html/dmmulti.html
Software, algorithmGCTFZhang, 2016https://www.mrc-lmb.cam.ac.uk/kzhang/
Software, algorithmPhyre protein homology modelKelley et al., 2015www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
Software, algorithmRelion 2.2Emsley et al., 2010https://www2.mrc-lmb.cam.ac.uk/relion/index.php
Software, algorithmMolProbityChen et al., 2010http://molprobity.biochem.duke.edu
Software, algorithmCootEmsley et al., 2010http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

Additional files

Download links