The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding

  1. Tatyana Bodrug
  2. Elizabeth M Wilson-Kubalek
  3. Stanley Nithianantham
  4. Alex F Thompson
  5. April Alfieri
  6. Ignas Gaska
  7. Jennifer Major
  8. Garrett Debs
  9. Sayaka Inagaki
  10. Pedro Gutierrez
  11. Larisa Gheber
  12. Richard J McKenney
  13. Charles Vaughn Sindelar
  14. Ron Milligan
  15. Jason Stumpff
  16. Steven S Rosenfeld
  17. Scott T Forth
  18. Jawdat Al-Bassam  Is a corresponding author
  1. University of California, Davis, United States
  2. The Scripps Research Institute, United States
  3. University of Vermont, United States
  4. Rensselaer Polytechnic Institute, United States
  5. Lerner Research Institute, Cleveland Clinic, United States
  6. Yale University, United States
  7. Mayo Clinic, United States
  8. Ben Gurion University of the Negev, Israel

Abstract

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains microtubule-bound states by slowing ATP-binding resulting in high-force production at both homotetramer ends.

Data availability

Two atomic coordinate files for Dm-KLP61F motor ATP-like MT(alpha-beta-tubulin) model is available at Protein Data Bank (PDB-ID: #XXXX. The Dm-KLP61F motor nucleotide-free MT(alpha-beta-tubulin) asymmetric unit Protein Data BankPDB-ID: #XXXXThe refined Dm-KLP61F motor AMPPNP MT cryo-EM map is available at the Electron microscopy Data bank (EMBD) EMDB ID:#XXXXand the Dm-KLP61F motor-tail nucleotide free MT cryo-EM map is available at Electron microscopy Data bank (EMBD) EMDB-iD:#XXXXDm-KLP61F motor-tail nucleotide free MT cryo-EM map (focused 3D-classification map) is available at the Electron microscopy Data bank (EMBD)EMDB-ID:#XXXX

Article and author information

Author details

  1. Tatyana Bodrug

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth M Wilson-Kubalek

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stanley Nithianantham

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6238-647X
  4. Alex F Thompson

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. April Alfieri

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ignas Gaska

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer Major

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Garrett Debs

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sayaka Inagaki

    Department of Pharmacology, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Pedro Gutierrez

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Larisa Gheber

    Department of Chemistry, Ben Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3759-4001
  12. Richard J McKenney

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Charles Vaughn Sindelar

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6646-7776
  14. Ron Milligan

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jason Stumpff

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Steven S Rosenfeld

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Scott T Forth

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Jawdat Al-Bassam

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    For correspondence
    jmalbassam@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6625-2102

Funding

National Science Foundation (1615991)

  • Jawdat Al-Bassam

National Institutes of Health (GM110283)

  • Jawdat Al-Bassam

National Institutes of Health (GM121491)

  • Jason Stumpff

National Institutes of Health (GM130556)

  • Jason Stumpff

Israel Science Foundation (ISF 386/18)

  • Larisa Gheber

United States-Israel Binational Science Foundation (BSF-2015851)

  • Larisa Gheber

National Institutes of Health (GM130556)

  • Richard J McKenney

National Institutes of Health (GM052468)

  • Ron Milligan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Bodrug et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,633
    views
  • 479
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatyana Bodrug
  2. Elizabeth M Wilson-Kubalek
  3. Stanley Nithianantham
  4. Alex F Thompson
  5. April Alfieri
  6. Ignas Gaska
  7. Jennifer Major
  8. Garrett Debs
  9. Sayaka Inagaki
  10. Pedro Gutierrez
  11. Larisa Gheber
  12. Richard J McKenney
  13. Charles Vaughn Sindelar
  14. Ron Milligan
  15. Jason Stumpff
  16. Steven S Rosenfeld
  17. Scott T Forth
  18. Jawdat Al-Bassam
(2020)
The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding
eLife 9:e51131.
https://doi.org/10.7554/eLife.51131

Share this article

https://doi.org/10.7554/eLife.51131

Further reading

    1. Cell Biology
    Jessica Y Chotiner, N Adrian Leu ... P Jeremy Wang
    Research Article

    Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.

    1. Cell Biology
    Alexandra M Fister, Adam Horn ... Anna Huttenlocher
    Research Article

    Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production, and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.