The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding

  1. Tatyana Bodrug
  2. Elizabeth M Wilson-Kubalek
  3. Stanley Nithianantham
  4. Alex F Thompson
  5. April Alfieri
  6. Ignas Gaska
  7. Jennifer Major
  8. Garrett Debs
  9. Sayaka Inagaki
  10. Pedro Gutierrez
  11. Larisa Gheber
  12. Richard J McKenney
  13. Charles Vaughn Sindelar
  14. Ron Milligan
  15. Jason Stumpff
  16. Steven S Rosenfeld
  17. Scott T Forth
  18. Jawdat Al-Bassam  Is a corresponding author
  1. University of California, Davis, United States
  2. The Scripps Research Institute, United States
  3. University of Vermont, United States
  4. Rensselaer Polytechnic Institute, United States
  5. Lerner Research Institute, Cleveland Clinic, United States
  6. Yale University, United States
  7. Mayo Clinic, United States
  8. Ben Gurion University of the Negev, Israel

Abstract

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains microtubule-bound states by slowing ATP-binding resulting in high-force production at both homotetramer ends.

Data availability

Two atomic coordinate files for Dm-KLP61F motor ATP-like MT(alpha-beta-tubulin) model is available at Protein Data Bank (PDB-ID: #XXXX. The Dm-KLP61F motor nucleotide-free MT(alpha-beta-tubulin) asymmetric unit Protein Data BankPDB-ID: #XXXXThe refined Dm-KLP61F motor AMPPNP MT cryo-EM map is available at the Electron microscopy Data bank (EMBD) EMDB ID:#XXXXand the Dm-KLP61F motor-tail nucleotide free MT cryo-EM map is available at Electron microscopy Data bank (EMBD) EMDB-iD:#XXXXDm-KLP61F motor-tail nucleotide free MT cryo-EM map (focused 3D-classification map) is available at the Electron microscopy Data bank (EMBD)EMDB-ID:#XXXX

Article and author information

Author details

  1. Tatyana Bodrug

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth M Wilson-Kubalek

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stanley Nithianantham

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6238-647X
  4. Alex F Thompson

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. April Alfieri

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ignas Gaska

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer Major

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Garrett Debs

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sayaka Inagaki

    Department of Pharmacology, Mayo Clinic, Jacksonville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Pedro Gutierrez

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Larisa Gheber

    Department of Chemistry, Ben Gurion University of the Negev, Beer-Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3759-4001
  12. Richard J McKenney

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Charles Vaughn Sindelar

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6646-7776
  14. Ron Milligan

    Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jason Stumpff

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Steven S Rosenfeld

    Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Scott T Forth

    Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Jawdat Al-Bassam

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    For correspondence
    jmalbassam@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6625-2102

Funding

National Science Foundation (1615991)

  • Jawdat Al-Bassam

National Institutes of Health (GM110283)

  • Jawdat Al-Bassam

National Institutes of Health (GM121491)

  • Jason Stumpff

National Institutes of Health (GM130556)

  • Jason Stumpff

Israel Science Foundation (ISF 386/18)

  • Larisa Gheber

United States-Israel Binational Science Foundation (BSF-2015851)

  • Larisa Gheber

National Institutes of Health (GM130556)

  • Richard J McKenney

National Institutes of Health (GM052468)

  • Ron Milligan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: August 16, 2019
  2. Accepted: January 16, 2020
  3. Accepted Manuscript published: January 20, 2020 (version 1)
  4. Version of Record published: February 12, 2020 (version 2)

Copyright

© 2020, Bodrug et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,876
    Page views
  • 412
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tatyana Bodrug
  2. Elizabeth M Wilson-Kubalek
  3. Stanley Nithianantham
  4. Alex F Thompson
  5. April Alfieri
  6. Ignas Gaska
  7. Jennifer Major
  8. Garrett Debs
  9. Sayaka Inagaki
  10. Pedro Gutierrez
  11. Larisa Gheber
  12. Richard J McKenney
  13. Charles Vaughn Sindelar
  14. Ron Milligan
  15. Jason Stumpff
  16. Steven S Rosenfeld
  17. Scott T Forth
  18. Jawdat Al-Bassam
(2020)
The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding
eLife 9:e51131.
https://doi.org/10.7554/eLife.51131

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Sumedha Dahal, Humaira Siddiqua ... Sathees C Raghavan
    Research Article Updated

    Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. ‘9 bp deletion’ (8271–8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with ‘9 bp deletion’ when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described ‘elimination of paternal mitochondria during fertilisation.

    1. Cell Biology
    Amanda E Brandon, Lewin Small ... Gregory J Cooney
    Research Article Updated

    Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.