Selectivity to approaching motion in retinal inputs to the dorsal visual pathway
Abstract
A central function of many neural circuits is to rapidly extract salient information from sensory inputs. Detecting approaching motion is an example of a challenging computational task that is important for avoiding threats and navigating through the environment. Here, we report that detection of approaching motion begins at the earliest stages of visual processing in primates. Several ganglion cell types, the retinal output neurons, show selectivity to approaching motion. Synaptic current recordings from these cells further reveal that this preference for approaching motion arises in the interplay between presynaptic excitatory and inhibitory circuit elements. These findings demonstrate how excitatory and inhibitory circuits interact to mediate an ethologically relevant neural function. They further indicate that the elementary computations that detect approaching motion begin early in the visual stream of primates.
Data availability
We have made the population data in the study freely available. Source data files have been provided for Figures 1, 6, and 7.
Article and author information
Author details
Funding
National Eye Institute (R01-EY027323)
- Michael B Manookin
National Eye Institute (R01-EY029247)
- Michael B Manookin
National Eye Institute (P30-EY001730)
- Michael B Manookin
National Institutes of Health (P51 OD-010425)
- Michael B Manookin
Research to Prevent Blindness
- Michael B Manookin
Alcon Research Institute
- Michael B Manookin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures were approved by the University of Washington Institutional Animal Care and Use Committee (IACUC protocol #4277-01).
Reviewing Editor
- Markus Meister, California Institute of Technology, United States
Version history
- Received: August 16, 2019
- Accepted: February 18, 2020
- Accepted Manuscript published: February 24, 2020 (version 1)
- Version of Record published: March 18, 2020 (version 2)
Copyright
© 2020, Appleby & Manookin
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,359
- Page views
-
- 217
- Downloads
-
- 6
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Ecology
High proportions of gut bacteria that produce their own food can be an indicator for poor gut health.
-
- Computational and Systems Biology
- Neuroscience
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.