1. Computational and Systems Biology
  2. Neuroscience
Download icon

Selectivity to approaching motion in retinal inputs to the dorsal visual pathway

  1. Todd R Appleby
  2. Michael B Manookin  Is a corresponding author
  1. University of Washington, United States
Research Article
  • Cited 2
  • Views 1,182
  • Annotations
Cite this article as: eLife 2020;9:e51144 doi: 10.7554/eLife.51144

Abstract

A central function of many neural circuits is to rapidly extract salient information from sensory inputs. Detecting approaching motion is an example of a challenging computational task that is important for avoiding threats and navigating through the environment. Here, we report that detection of approaching motion begins at the earliest stages of visual processing in primates. Several ganglion cell types, the retinal output neurons, show selectivity to approaching motion. Synaptic current recordings from these cells further reveal that this preference for approaching motion arises in the interplay between presynaptic excitatory and inhibitory circuit elements. These findings demonstrate how excitatory and inhibitory circuits interact to mediate an ethologically relevant neural function. They further indicate that the elementary computations that detect approaching motion begin early in the visual stream of primates.

Data availability

We have made the population data in the study freely available. Source data files have been provided for Figures 1, 6, and 7.

Article and author information

Author details

  1. Todd R Appleby

    Neuroscience Graduate Program, Department of Ophthalmolgy, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael B Manookin

    Department of Ophthalmology, University of Washington, Seattle, United States
    For correspondence
    manookin@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8116-7619

Funding

National Eye Institute (R01-EY027323)

  • Michael B Manookin

National Eye Institute (R01-EY029247)

  • Michael B Manookin

National Eye Institute (P30-EY001730)

  • Michael B Manookin

National Institutes of Health (P51 OD-010425)

  • Michael B Manookin

Research to Prevent Blindness

  • Michael B Manookin

Alcon Research Institute

  • Michael B Manookin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the University of Washington Institutional Animal Care and Use Committee (IACUC protocol #4277-01).

Reviewing Editor

  1. Markus Meister, California Institute of Technology, United States

Publication history

  1. Received: August 16, 2019
  2. Accepted: February 18, 2020
  3. Accepted Manuscript published: February 24, 2020 (version 1)
  4. Version of Record published: March 18, 2020 (version 2)

Copyright

© 2020, Appleby & Manookin

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,182
    Page views
  • 189
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Michael S Lauer, Deepshikha Roychowdhury
    Research Article Updated

    Previous reports have described worsening inequalities of National Institutes of Health (NIH) funding. We analyzed Research Project Grant data through the end of Fiscal Year 2020, confirming worsening inequalities beginning at the time of the NIH budget doubling (1998–2003), while finding that trends in recent years have reversed for both investigators and institutions, but only to a modest degree. We also find that career-stage trends have stabilized, with equivalent proportions of early-, mid-, and late-career investigators funded from 2017 to 2020. The fraction of women among funded PIs continues to increase, but they are still not at parity. Analyses of funding inequalities show that inequalities for investigators, and to a lesser degree for institutions, have consistently been greater within groups (i.e. within groups by career stage, gender, race, and degree) than between groups.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Hannah R Meredith et al.
    Research Article

    Human mobility is a core component of human behavior and its quantification is critical for understanding its impact on infectious disease transmission, traffic forecasting, access to resources and care, intervention strategies, and migratory flows. When mobility data are limited, spatial interaction models have been widely used to estimate human travel, but have not been extensively validated in low- and middle-income settings. Geographic, sociodemographic, and infrastructure differences may impact the ability for models to capture these patterns, particularly in rural settings. Here, we analyzed mobility patterns inferred from mobile phone data in four Sub-Saharan African countries to investigate the ability for variants on gravity and radiation models to estimate travel. Adjusting the gravity model such that parameters were fit to different trip types, including travel between more or less populated areas and/or different regions, improved model fit in all four countries. This suggests that alternative models may be more useful in these settings and better able to capture the range of mobility patterns observed.