Selectivity to approaching motion in retinal inputs to the dorsal visual pathway

  1. Todd R Appleby
  2. Michael B Manookin  Is a corresponding author
  1. University of Washington, United States

Abstract

A central function of many neural circuits is to rapidly extract salient information from sensory inputs. Detecting approaching motion is an example of a challenging computational task that is important for avoiding threats and navigating through the environment. Here, we report that detection of approaching motion begins at the earliest stages of visual processing in primates. Several ganglion cell types, the retinal output neurons, show selectivity to approaching motion. Synaptic current recordings from these cells further reveal that this preference for approaching motion arises in the interplay between presynaptic excitatory and inhibitory circuit elements. These findings demonstrate how excitatory and inhibitory circuits interact to mediate an ethologically relevant neural function. They further indicate that the elementary computations that detect approaching motion begin early in the visual stream of primates.

Data availability

We have made the population data in the study freely available. Source data files have been provided for Figures 1, 6, and 7.

Article and author information

Author details

  1. Todd R Appleby

    Neuroscience Graduate Program, Department of Ophthalmolgy, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael B Manookin

    Department of Ophthalmology, University of Washington, Seattle, United States
    For correspondence
    manookin@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8116-7619

Funding

National Eye Institute (R01-EY027323)

  • Michael B Manookin

National Eye Institute (R01-EY029247)

  • Michael B Manookin

National Eye Institute (P30-EY001730)

  • Michael B Manookin

National Institutes of Health (P51 OD-010425)

  • Michael B Manookin

Research to Prevent Blindness

  • Michael B Manookin

Alcon Research Institute

  • Michael B Manookin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Markus Meister, California Institute of Technology, United States

Ethics

Animal experimentation: All procedures were approved by the University of Washington Institutional Animal Care and Use Committee (IACUC protocol #4277-01).

Version history

  1. Received: August 16, 2019
  2. Accepted: February 18, 2020
  3. Accepted Manuscript published: February 24, 2020 (version 1)
  4. Version of Record published: March 18, 2020 (version 2)

Copyright

© 2020, Appleby & Manookin

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,403
    views
  • 218
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Todd R Appleby
  2. Michael B Manookin
(2020)
Selectivity to approaching motion in retinal inputs to the dorsal visual pathway
eLife 9:e51144.
https://doi.org/10.7554/eLife.51144

Share this article

https://doi.org/10.7554/eLife.51144

Further reading

    1. Computational and Systems Biology
    Antony M Jose
    Research Article

    Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.

    1. Computational and Systems Biology
    2. Ecology
    Kazushi Tsutsui, Ryoya Tanaka ... Keisuke Fujii
    Research Article

    Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.