Intergenerational Effects: How maternal adversity impacts offspring
Surviving to adulthood is not an easy task, particularly for animals that live in the wild. For instance, among baboons born in and around Ambolesi National Park in Kenya, only 50% of females and 44% of males will make it to adulthood (Alberts, 2019). In order to survive, individuals must first be born healthy, have access to sufficient nutritional resources, and avoid predation. Baboons and other species, including humans, rely on the extensive care provided by parents to protect them from these challenges, and to teach them the skills they need to thrive in complex social and ecological environments. Given the important role that parents, particularly mothers, play in the growth, development, and survival of their offspring, what happens when mothers have themselves experienced significant challenges in their own early life?
Now, in eLife, Susan Alberts and co-workers at institutes in the US and Kenya – including Matthew Zipple (Duke University) as first author – report how adverse experiences in early life among female baboons affects offspring survival (Zipple et al., 2019). They analyzed data collected from wild baboons in and around Ambolesi Park across four decades, and measured various examples of adversity that had previously been associated with reduced survival among female baboons: maternal death; having a low social rank; experiencing high levels of competition for resources; being born in a drought; and having a close-in-age younger sibling (Tung et al., 2016). The data revealed that the challenges faced by the mother were more strongly associated with offspring survival than the offspring’s own experiences of adversity.
One explanation for this could be that offspring have evolved to be sensitive to cues their mother provides about the quality of the environment (Mousseau and Fox, 1998; Figure 1). The potential for these intergenerational effects is even greater in mammals, where pregnancy and breastfeeding allow for maternal biology to influence offspring development through the transfer of hormones. If mothers live in an environment with high adversity, maternal hormones can provide the offspring with ‘predictive’ cues about its future environment and change how the offspring grows and develops (Kuzawa, 2005).
Zipple et al. also found that offspring were less likely to reach adulthood if their mother’s own mother had died, or if their mother had a close-in-age younger sibling. This finding, however, is not consistent with the idea that changes to offspring biology are only caused by predictive cues provided by the mother. Instead, it illustrates how diminished access to resources in early life can have a cascading effect on survival that persists across generations (Figure 1). For example, female baboons faced with the loss of their own mother or the quick arrival of a resource-needy sibling could experience greater nutritional stress, which critically limits their growth and development (Gagliano and McCormick, 2007). As a result, when they become mothers these baboons may struggle to provide the resources their own offspring need.
While not investigated by Zipple et al., early adversity could also reduce the quality of maternal care. Early maternal death and the birth of a close-in-age sibling, for example, could result in an individual receiving less care, and not learning how to care for their own offspring. Finally, mothers who experienced early adversity are also more likely to experience early mortality, suggesting that offspring death may be a result of mothers no longer being able to directly protect and provide for their offspring (Zipple et al., 2019).
Work by Alberts on the same population of baboons has revealed that mothers who experienced early adversity were also more likely to be socially isolated from other females in adulthood (Alberts, 2019). As well as reducing their own survival, this social isolation could prevent female baboons from bonding with other mothers, which may influence the health and survival of their offspring. For example, reduced social bonds could result in less grooming of offspring, which could increase parasites, such as ticks. Grooming also affects microbiome diversity among baboons, suggesting that a reduction in communal grooming could lead to immune system or metabolism changes that impact the offspring’s health (Tung et al., 2015).
These findings suggest that the stressful environments experienced by a mother can negatively impact offspring survival. Future work should focus on investigating precisely how adversity early in life affects patterns of maternal care, and to what extent these effects influence the support and care non-mothers provide to offspring.
References
-
Social influences on survival and reproduction: insights from a long-term study of wild baboonsJournal of Animal Ecology 88:47–66.https://doi.org/10.1111/1365-2656.12887
-
Maternal condition influences phenotypic selection on offspringJournal of Animal Ecology 76:174–182.https://doi.org/10.1111/j.1365-2656.2006.01187.x
-
Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments?American Journal of Human Biology 17:5–21.https://doi.org/10.1002/ajhb.20091
-
The adaptive significance of maternal effectsTrends in Ecology & Evolution 13:403–407.https://doi.org/10.1016/S0169-5347(98)01472-4
-
Cumulative early life adversity predicts longevity in wild baboonsNature Communications 7:11181.https://doi.org/10.1038/ncomms11181
Article and author information
Author details
Publication history
Copyright
© 2019, Thayer and Sweetman
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,275
- views
-
- 111
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Microbiology and Infectious Disease
Interspecies interactions involving direct competition via bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic Enterobacteriaceae species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific Escherichia coli and Klebsiella pneumoniae strains. We hypothesized that class IIb microcin production extends beyond these specific compounds and organisms. With a customized informatics-driven approach, screening bacterial genomes in public databases with BLAST and manual curation, we have discovered 12 previously unknown class IIb microcins in seven additional Enterobacteriaceae species, encompassing phytopathogens and environmental isolates. We introduce three novel clades of microcins (MccW, MccX, and MccZ), while also identifying eight new variants of the five known class IIb microcins. To validate their antimicrobial potential, we heterologously expressed these microcins in E. coli and demonstrated efficacy against a variety of bacterial isolates, including plant pathogens from the genera Brenneria, Gibbsiella, and Rahnella. Two newly discovered microcins exhibit activity against Gram-negative ESKAPE pathogens, i.e., Acinetobacter baumannii or Pseudomonas aeruginosa, providing the first evidence that class IIb microcins can target bacteria outside of the Enterobacteriaceae family. This study underscores that class IIb microcin genes are more prevalent in the microbial world than previously recognized and that synthetic hybrid microcins can be a viable tool to target clinically relevant drug-resistant pathogens. Our findings hold significant promise for the development of innovative engineered live biotherapeutic products tailored to combat these resilient bacteria.
-
- Ecology
For the first time in any animal, we show that nocturnal bull ants use the exceedingly dim polarisation pattern produced by the moon for overnight navigation. The sun or moon can provide directional information via their position; however, they can often be obstructed by clouds, canopy, or the horizon. Despite being hidden, these bodies can still provide compass information through the polarised light pattern they produce/reflect. Sunlight produces polarised light patterns across the overhead sky as it enters the atmosphere, and solar polarised light is a well-known compass cue for navigating animals. Moonlight produces an analogous pattern, albeit a million times dimmer than sunlight. Here, we show evidence that polarised moonlight forms part of the celestial compass of navigating nocturnal ants. Nocturnal bull ants leave their nest at twilight and rely heavily on the overhead solar polarisation pattern to navigate. Yet many foragers return home overnight when the sun cannot guide them. We demonstrate that these bull ants use polarised moonlight to navigate home during the night, by rotating the overhead polarisation pattern above homing ants, who alter their headings in response. Furthermore, these ants can detect this cue throughout the lunar month, even under crescent moons, when polarised light levels are at their lowest. Finally, we show the long-term incorporation of this moonlight pattern into the ants’ path integration system throughout the night for homing, as polarised sunlight is incorporated throughout the day.