Variability in locomotor dynamics reveals the critical role of feedback in task control

  1. Ismail Uyanik  Is a corresponding author
  2. Shahin Sefati
  3. Sarah A Stamper
  4. Kyoung-A Cho
  5. M Mert Ankarali
  6. Eric S Fortune
  7. Noah J Cowan  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Middle East Technical University, Turkey
  3. New Jersey Institute of Technology, United States

Abstract

Animals vary considerably in size, shape, and physiological features across individuals, but yet achieve remarkably similar behavioral performances. We examined how animals compensate for morphophysiological variation by measuring the system dynamics of individual knifefish (Eigenmannia virescens) in a refuge tracking task. Kinematic measurements of Eigenmannia were used to generate individualized estimates of each fish's locomotor plant and controller, revealing substantial variability between fish. To test the impact of this variability on behavioral performance, these models were used to perform simulated 'brain transplants'-computationally swapping controllers and plants between individuals. We found that simulated closed-loop performance was robust to mismatch between plant and controller. This suggests that animals rely on feedback rather than precisely tuned neural controllers to compensate for morphophysiological variability.

Data availability

An archived version of the dataset and analysis code will be made available through the Johns Hopkins University Data Archive.

The following data sets were generated

Article and author information

Author details

  1. Ismail Uyanik

    Laboratory of Computational Sensing and Robotics, Johns Hopkins University, Baltimore, United States
    For correspondence
    uyanikismail@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3535-5616
  2. Shahin Sefati

    Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah A Stamper

    Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyoung-A Cho

    Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. M Mert Ankarali

    Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  6. Eric S Fortune

    Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Noah J Cowan

    Laboratory of Computational Sensing and Robotics, Johns Hopkins University, Baltimore, United States
    For correspondence
    ncowan@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2502-3770

Funding

National Science Foundation (1557895)

  • Noah J Cowan

National Science Foundation (1557858)

  • Eric S Fortune

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures used for this study were reviewed and approved by Johns Hopkins (protocol: FI19A178) and Rutgers (protocol: 999900774) Animal Care and Use committees and followed the guidelines given by the National Research Council and the Society for Neuroscience.

Copyright

© 2020, Uyanik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,908
    views
  • 349
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ismail Uyanik
  2. Shahin Sefati
  3. Sarah A Stamper
  4. Kyoung-A Cho
  5. M Mert Ankarali
  6. Eric S Fortune
  7. Noah J Cowan
(2020)
Variability in locomotor dynamics reveals the critical role of feedback in task control
eLife 9:e51219.
https://doi.org/10.7554/eLife.51219

Share this article

https://doi.org/10.7554/eLife.51219

Further reading

    1. Neuroscience
    Steven S Hou, Yuya Ikegawa ... Masato Maesako
    Tools and Resources

    γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.

    1. Neuroscience
    Francesco Longo
    Insight

    The neurotransmitter dopamine helps form long-term memories by increasing the production of proteins through a unique signaling pathway.