Revisiting the role of Dcc in visual system development with a novel eye clearing method

  1. Robin J Vigouroux
  2. Quénol Cesar
  3. Alain Chédotal  Is a corresponding author
  4. Kim Tuyen Nguyen-Ba-Charvet  Is a corresponding author
  1. Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France
  2. Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, France

Abstract

The Deleted in Colorectal Carcinoma (Dcc) receptor plays a critical role in optic nerve development. Whilst Dcc is expressed postnatally in the eye, its function remains unknown as Dcc knockouts die at birth. To circumvent this drawback, we generated an eye-specific Dcc mutant. To study the organization of the retina and visual projections in these mice, we also established EyeDISCO, a novel tissue clearing protocol that removes melanin allowing 3D imaging of whole eyes and visual pathways. We show that in the absence of Dcc, some ganglion cell axons stalled at the optic disc, whereas others perforated the retina, separating photoreceptors from the retinal pigment epithelium. A subset of visual axons entered the CNS, but these projections are perturbed. Moreover, Dcc-deficient retinas displayed a massive postnatal loss of retinal ganglion cells and a large fraction of photoreceptors. Thus, Dcc is essential for the development and maintenance of the retina.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All source files are provided.

Article and author information

Author details

  1. Robin J Vigouroux

    Institut de la Vision, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3217-895X
  2. Quénol Cesar

    Institut de la Vision, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Alain Chédotal

    Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    alain.chedotal@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7577-3794
  4. Kim Tuyen Nguyen-Ba-Charvet

    Institut de la Vision, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    kim.charvet@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Fondation ARC pour la Recherche sur le Cancer (DOC20190508735)

  • Robin J Vigouroux

Agence Nationale de la Recherche (ANR-11-IDEX-0004-02)

  • Alain Chédotal

Agence Nationale de la Recherche (ANR-10-LABX-65)

  • Alain Chédotal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All experiments were designed using the 3R rule: to reduce, refine, and replace the use of animals. All animal procedures were carried out according to approved institutional guidelines (#B-75-12-02) of the Institut de la Vision. The protocol was approved by the Sorbonne University ethic committee (Charles Darwin)(Permit Number: 9571). In cases of animal handling, experiments were performed to minimize animal stress and suffering.

Version history

  1. Received: August 22, 2019
  2. Accepted: February 24, 2020
  3. Accepted Manuscript published: February 25, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Vigouroux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,895
    views
  • 505
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robin J Vigouroux
  2. Quénol Cesar
  3. Alain Chédotal
  4. Kim Tuyen Nguyen-Ba-Charvet
(2020)
Revisiting the role of Dcc in visual system development with a novel eye clearing method
eLife 9:e51275.
https://doi.org/10.7554/eLife.51275

Share this article

https://doi.org/10.7554/eLife.51275

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.