Movement of accessible plasma membrane cholesterol by GRAMD1 lipid transfer protein complex
Abstract
Cholesterol is a major structural component of the plasma membrane (PM). The majority of PM cholesterol forms complexes with other PM lipids, making it inaccessible for intracellular transport. Transition of PM cholesterol between accessible and inaccessible pools maintains cellular homeostasis, but how cells monitor PM cholesterol accessibility remains unclear. We show that endoplasmic reticulum (ER)-anchored lipid transfer proteins, the GRAMD1s, sense and transport accessible PM cholesterol to the ER. GRAMD1s bind one another and populate at ER-PM contacts by sensing a transient expansion of the accessible pool of PM cholesterol via GRAM domains and facilitate its transport via StART-like domains. Cells lacking all three GRAMD1s exhibit striking expansion of the accessible pool of PM cholesterol due to less efficient PM to ER transport of accessible cholesterol. Thus, GRAMD1s facilitate movement of accessible PM cholesterol to the ER in order to counteract acute increase of PM cholesterol, activating non-vesicular cholesterol transport.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5, 6, 7, 3-S-1, 3-S-2, 4-S-2, 4-S-3, 5-S-1, 5-S-2, 6-S-1, 6-S-2, 7-S-1, and 7-S-2.
-
The structure of mouse AsterA (GramD1a) with 25-hydroxy cholesterolProtein Data Bank, 6GQF.
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (17H05065)
- Yasunori Saheki
Ministry of Education - Singapore (MOE2017-T2-2-001)
- Yasunori Saheki
Nanyang Technological University (Nanyang Assistant Professorship (NAP))
- Yasunori Saheki
Nanyang Technological University (Lee Kong Chian School of Medicine startup grant)
- Yasunori Saheki
National Research Foundation Singapore (NRFI2015-05)
- Alexander Triebl
- Federico Tesio Torta
- Markus R Wenk
National Research Foundation Singapore (NRFSBP-P4)
- Alexander Triebl
- Federico Tesio Torta
- Markus R Wenk
Japan Society for the Promotion of Science (Overseas Research Fellowship)
- Tomoki Naito
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Naito et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,738
- views
-
- 1,194
- downloads
-
- 129
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.
-
- Biochemistry and Chemical Biology
N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.