Movement of accessible plasma membrane cholesterol by GRAMD1 lipid transfer protein complex

  1. Tomoki Naito
  2. Bilge Ercan
  3. Logesvaran Krshnan
  4. Alexander Triebl
  5. Dylan Hong Zheng Koh
  6. Fan-Yan Wei
  7. Kazuhito Tomizawa
  8. Federico Tesio Torta
  9. Markus R Wenk
  10. Yasunori Saheki  Is a corresponding author
  1. Nanyang Technological University, Singapore
  2. National University of Singapore, Singapore
  3. Kumamoto University, Japan

Abstract

Cholesterol is a major structural component of the plasma membrane (PM). The majority of PM cholesterol forms complexes with other PM lipids, making it inaccessible for intracellular transport. Transition of PM cholesterol between accessible and inaccessible pools maintains cellular homeostasis, but how cells monitor PM cholesterol accessibility remains unclear. We show that endoplasmic reticulum (ER)-anchored lipid transfer proteins, the GRAMD1s, sense and transport accessible PM cholesterol to the ER. GRAMD1s bind one another and populate at ER-PM contacts by sensing a transient expansion of the accessible pool of PM cholesterol via GRAM domains and facilitate its transport via StART-like domains. Cells lacking all three GRAMD1s exhibit striking expansion of the accessible pool of PM cholesterol due to less efficient PM to ER transport of accessible cholesterol. Thus, GRAMD1s facilitate movement of accessible PM cholesterol to the ER in order to counteract acute increase of PM cholesterol, activating non-vesicular cholesterol transport.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5, 6, 7, 3-S-1, 3-S-2, 4-S-2, 4-S-3, 5-S-1, 5-S-2, 6-S-1, 6-S-2, 7-S-1, and 7-S-2.

The following previously published data sets were used

Article and author information

Author details

  1. Tomoki Naito

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Bilge Ercan

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Logesvaran Krshnan

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Triebl

    Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8423-8224
  5. Dylan Hong Zheng Koh

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan-Yan Wei

    Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazuhito Tomizawa

    Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Federico Tesio Torta

    Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Markus R Wenk

    Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Yasunori Saheki

    Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    For correspondence
    yasunori.saheki@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1229-6668

Funding

Japan Society for the Promotion of Science (17H05065)

  • Yasunori Saheki

Ministry of Education - Singapore (MOE2017-T2-2-001)

  • Yasunori Saheki

Nanyang Technological University (Nanyang Assistant Professorship (NAP))

  • Yasunori Saheki

Nanyang Technological University (Lee Kong Chian School of Medicine startup grant)

  • Yasunori Saheki

National Research Foundation Singapore (NRFI2015-05)

  • Alexander Triebl
  • Federico Tesio Torta
  • Markus R Wenk

National Research Foundation Singapore (NRFSBP-P4)

  • Alexander Triebl
  • Federico Tesio Torta
  • Markus R Wenk

Japan Society for the Promotion of Science (Overseas Research Fellowship)

  • Tomoki Naito

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arun Radhakrishnan, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: August 27, 2019
  2. Accepted: November 13, 2019
  3. Accepted Manuscript published: November 14, 2019 (version 1)
  4. Version of Record published: December 11, 2019 (version 2)

Copyright

© 2019, Naito et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,014
    views
  • 1,125
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomoki Naito
  2. Bilge Ercan
  3. Logesvaran Krshnan
  4. Alexander Triebl
  5. Dylan Hong Zheng Koh
  6. Fan-Yan Wei
  7. Kazuhito Tomizawa
  8. Federico Tesio Torta
  9. Markus R Wenk
  10. Yasunori Saheki
(2019)
Movement of accessible plasma membrane cholesterol by GRAMD1 lipid transfer protein complex
eLife 8:e51401.
https://doi.org/10.7554/eLife.51401

Share this article

https://doi.org/10.7554/eLife.51401

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.