Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
Abstract
Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict epigenome features from DNA sequence - to support inference concerning the regulatory effects of disease-associated variants. Here, we evaluate the advantages of training convolutional neural network (CNN) models on a broad set of epigenomic features collected in a single disease-relevant tissue – pancreatic islets in the case of type 2 diabetes (T2D) - as opposed to models trained on multiple human tissues. We report convergence of CNN-based metrics of regulatory function with conventional approaches to variant prioritization – genetic fine-mapping and regulatory annotation enrichment. We demonstrate that CNN-based analyses can refine association signals at T2D-associated loci and provide experimental validation for one such signal. We anticipate that these approaches will become routine in downstream analyses of GWAS.
Data availability
The datasets analysed during the current study are available in the public repositories under accessions listed in STable 1.
-
Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility lociEuropean Genome-Phenome Archive, EGAS00001002592.
-
Integration of ATAC-seq and RNA-seq Identifies Human Alpha Cell and Beta Cell Signature GenesNCBI Gene Expression Omnibus, GSE76268.
-
Duke_DnaseSeq_PanIsletsNCBI Gene Expression Omnibus, GSM816660.
-
UNC_FaireSeq_PanIsletsNCBI Gene Expression Omnibus, GSM864346.
-
DNaseI/FAIRE/ChIP Synthesis from ENCODE/OpenChrom(Duke/UNC/UTA)NCBI Gene Expression Omnibus, GSE40833.
-
BI Human Reference Epigenome Mapping Project: ChIP-Seq in human subjectNCBI Gene Expression Omnibus, GSE19465.
-
UCSF-UBC Human Reference Epigenome Mapping ProjectNCBI Gene Expression Omnibus, GSE16368.
-
Epigenomic plasticity enables human pancreatic alpha to beta cell reprogrammingNCBI Gene Expression Omnibus, GSE50386.
Article and author information
Author details
Funding
Wellcome (099673/Z/12/Z)
- Matthias Thurner
Horizon 2020 Framework Programme (T2D Systems)
- Anna L Gloyn
NIH Clinical Center (U01-DK105535)
- Anna L Gloyn
- Mark I McCarthy
NIH Clinical Center (U01-DK085545)
- Anna L Gloyn
National Institute for Health Research (NF-SI-0617-10090)
- Anna L Gloyn
Wellcome (090532)
- Mark I McCarthy
Wellcome (106130)
- Anna L Gloyn
- Mark I McCarthy
Wellcome (098381)
- Mark I McCarthy
Wellcome (203141)
- Anna L Gloyn
- Mark I McCarthy
Wellcome (212259)
- Mark I McCarthy
Wellcome (095101)
- Anna L Gloyn
Wellcome (200837)
- Anna L Gloyn
Medical Research Council (MR/L020149/1)
- Anna L Gloyn
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Wesolowska-Andersen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,137
- views
-
- 628
- downloads
-
- 27
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.
-
- Computational and Systems Biology
- Genetics and Genomics
Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.