Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
Abstract
Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict epigenome features from DNA sequence - to support inference concerning the regulatory effects of disease-associated variants. Here, we evaluate the advantages of training convolutional neural network (CNN) models on a broad set of epigenomic features collected in a single disease-relevant tissue – pancreatic islets in the case of type 2 diabetes (T2D) - as opposed to models trained on multiple human tissues. We report convergence of CNN-based metrics of regulatory function with conventional approaches to variant prioritization – genetic fine-mapping and regulatory annotation enrichment. We demonstrate that CNN-based analyses can refine association signals at T2D-associated loci and provide experimental validation for one such signal. We anticipate that these approaches will become routine in downstream analyses of GWAS.
Data availability
The datasets analysed during the current study are available in the public repositories under accessions listed in STable 1.
-
Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility lociEuropean Genome-Phenome Archive, EGAS00001002592.
-
Integration of ATAC-seq and RNA-seq Identifies Human Alpha Cell and Beta Cell Signature GenesNCBI Gene Expression Omnibus, GSE76268.
-
Duke_DnaseSeq_PanIsletsNCBI Gene Expression Omnibus, GSM816660.
-
UNC_FaireSeq_PanIsletsNCBI Gene Expression Omnibus, GSM864346.
-
DNaseI/FAIRE/ChIP Synthesis from ENCODE/OpenChrom(Duke/UNC/UTA)NCBI Gene Expression Omnibus, GSE40833.
-
BI Human Reference Epigenome Mapping Project: ChIP-Seq in human subjectNCBI Gene Expression Omnibus, GSE19465.
-
UCSF-UBC Human Reference Epigenome Mapping ProjectNCBI Gene Expression Omnibus, GSE16368.
-
Epigenomic plasticity enables human pancreatic alpha to beta cell reprogrammingNCBI Gene Expression Omnibus, GSE50386.
Article and author information
Author details
Funding
Wellcome (099673/Z/12/Z)
- Matthias Thurner
Horizon 2020 Framework Programme (T2D Systems)
- Anna L Gloyn
NIH Clinical Center (U01-DK105535)
- Anna L Gloyn
- Mark I McCarthy
NIH Clinical Center (U01-DK085545)
- Anna L Gloyn
National Institute for Health Research (NF-SI-0617-10090)
- Anna L Gloyn
Wellcome (090532)
- Mark I McCarthy
Wellcome (106130)
- Anna L Gloyn
- Mark I McCarthy
Wellcome (098381)
- Mark I McCarthy
Wellcome (203141)
- Anna L Gloyn
- Mark I McCarthy
Wellcome (212259)
- Mark I McCarthy
Wellcome (095101)
- Anna L Gloyn
Wellcome (200837)
- Anna L Gloyn
Medical Research Council (MR/L020149/1)
- Anna L Gloyn
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Wesolowska-Andersen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,202
- views
-
- 634
- downloads
-
- 29
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.
-
- Biochemistry and Chemical Biology
- Computational and Systems Biology
Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.