Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals

Abstract

Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict epigenome features from DNA sequence - to support inference concerning the regulatory effects of disease-associated variants. Here, we evaluate the advantages of training convolutional neural network (CNN) models on a broad set of epigenomic features collected in a single disease-relevant tissue – pancreatic islets in the case of type 2 diabetes (T2D) - as opposed to models trained on multiple human tissues. We report convergence of CNN-based metrics of regulatory function with conventional approaches to variant prioritization – genetic fine-mapping and regulatory annotation enrichment. We demonstrate that CNN-based analyses can refine association signals at T2D-associated loci and provide experimental validation for one such signal. We anticipate that these approaches will become routine in downstream analyses of GWAS.

Data availability

The datasets analysed during the current study are available in the public repositories under accessions listed in STable 1.

The following previously published data sets were used

Article and author information

Author details

  1. Agata Wesolowska-Andersen

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8688-2814
  2. Grace Zhuo Yu

    Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Vibe Nylander

    Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Fernando Abaitua

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Matthias Thurner

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7329-9769
  6. Jason M Torres

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7537-7035
  7. Anubha Mahajan

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Anna L Gloyn

    The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1205-1844
  9. Mark I McCarthy

    Department of Human Genetics, Genentech, South San Francisco, United States
    For correspondence
    mark.mccarthy@drl.ox.ac.uk
    Competing interests
    Mark I McCarthy, Senior editor, eLife; has served on advisory panels for Pfizer, NovoNordisk, Zoe Global; has received honoraria from Merck, Pfizer, NovoNordisk and Eli Lilly; has stock options in Zoe Global and has received research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier & Takeda. As of June 2019, is an employee of Genentech, and holds stock in Roche.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4393-0510

Funding

Wellcome (099673/Z/12/Z)

  • Matthias Thurner

Horizon 2020 Framework Programme (T2D Systems)

  • Anna L Gloyn

NIH Clinical Center (U01-DK105535)

  • Anna L Gloyn
  • Mark I McCarthy

NIH Clinical Center (U01-DK085545)

  • Anna L Gloyn

National Institute for Health Research (NF-SI-0617-10090)

  • Anna L Gloyn

Wellcome (090532)

  • Mark I McCarthy

Wellcome (106130)

  • Anna L Gloyn
  • Mark I McCarthy

Wellcome (098381)

  • Mark I McCarthy

Wellcome (203141)

  • Anna L Gloyn
  • Mark I McCarthy

Wellcome (212259)

  • Mark I McCarthy

Wellcome (095101)

  • Anna L Gloyn

Wellcome (200837)

  • Anna L Gloyn

Medical Research Council (MR/L020149/1)

  • Anna L Gloyn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Wesolowska-Andersen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,202
    views
  • 634
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agata Wesolowska-Andersen
  2. Grace Zhuo Yu
  3. Vibe Nylander
  4. Fernando Abaitua
  5. Matthias Thurner
  6. Jason M Torres
  7. Anubha Mahajan
  8. Anna L Gloyn
  9. Mark I McCarthy
(2020)
Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
eLife 9:e51503.
https://doi.org/10.7554/eLife.51503

Share this article

https://doi.org/10.7554/eLife.51503

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.