1. Developmental Biology
  2. Immunology and Inflammation
Download icon

Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila

  1. Katrin Kierdorf
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Gross
  9. Daria E Siekhaus
  10. Marc S Dionne  Is a corresponding author
  1. University of Freiburg, Germany
  2. Imperial College London, United Kingdom
  3. Institute of Science and Technology Austria, Austria
Research Article
  • Cited 8
  • Views 2,140
  • Annotations
Cite this article as: eLife 2020;9:e51595 doi: 10.7554/eLife.51595

Abstract

Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signaling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signaling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signaling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.

Data availability

Data has been made available on Zenodo, under the doi 10.5281/zenodo.3608626.

The following data sets were generated

Article and author information

Author details

  1. Katrin Kierdorf

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9272-4780
  2. Fabian Hersperger

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Sharrock

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Crystal M Vincent

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Pinar Ustaoglu

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiawen Dou

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Attila Gyoergy

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1819-198X
  8. Olaf Gross

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Daria E Siekhaus

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8323-8353
  10. Marc S Dionne

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    m.dionne@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1750

Funding

Wellcome (Investigator Award 207467/Z/17/Z)

  • Marc S Dionne

Biotechnology and Biological Sciences Research Council (Research Grant BB/P000592/1)

  • Katrin Kierdorf
  • Pinar Ustaoglu
  • Marc S Dionne

Biotechnology and Biological Sciences Research Council (Research Grant BB/L020122/2)

  • Jessica Sharrock
  • Marc S Dionne

Medical Research Council (Research Grant MR/L018802/2)

  • Katrin Kierdorf
  • Marc S Dionne

Deutsche Forschungsgemeinschaft (Research fellowship KI-1876/1)

  • Katrin Kierdorf

Biotechnology and Biological Sciences Research Council (PhD studentship BB/L502169/1)

  • Jessica Sharrock

Deutsche Forschungsgemeinschaft (CIBSS-EXC-2189-Project ID 390939984)

  • Fabian Hersperger

European Commission (ERC starting grant 337689)

  • Olaf Gross

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: September 4, 2019
  2. Accepted: January 10, 2020
  3. Accepted Manuscript published: January 16, 2020 (version 1)
  4. Accepted Manuscript updated: January 20, 2020 (version 2)
  5. Version of Record published: February 3, 2020 (version 3)

Copyright

© 2020, Kierdorf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,140
    Page views
  • 316
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Dongsheng Guo et al.
    Tools and Resources

    Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.

    1. Cell Biology
    2. Developmental Biology
    Karl F Lechtreck et al.
    Research Article Updated

    Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.