Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila

  1. Katrin Kierdorf  Is a corresponding author
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Gross
  9. Daria E Siekhaus
  10. Marc S Dionne  Is a corresponding author
  1. University of Freiburg, Germany
  2. Imperial College London, United Kingdom
  3. Institute of Science and Technology Austria, Austria

Abstract

Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signaling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signaling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signaling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.

Data availability

Data has been made available on Zenodo, under the doi 10.5281/zenodo.3608626.

The following data sets were generated

Article and author information

Author details

  1. Katrin Kierdorf

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    For correspondence
    katrin.kierdorf@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9272-4780
  2. Fabian Hersperger

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Sharrock

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Crystal M Vincent

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Pinar Ustaoglu

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiawen Dou

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Attila Gyoergy

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1819-198X
  8. Olaf Gross

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Daria E Siekhaus

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8323-8353
  10. Marc S Dionne

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    m.dionne@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1750

Funding

Wellcome (Investigator Award 207467/Z/17/Z)

  • Marc S Dionne

Biotechnology and Biological Sciences Research Council (Research Grant BB/P000592/1)

  • Katrin Kierdorf
  • Pinar Ustaoglu
  • Marc S Dionne

Biotechnology and Biological Sciences Research Council (Research Grant BB/L020122/2)

  • Jessica Sharrock
  • Marc S Dionne

Medical Research Council (Research Grant MR/L018802/2)

  • Katrin Kierdorf
  • Marc S Dionne

Deutsche Forschungsgemeinschaft (Research fellowship KI-1876/1)

  • Katrin Kierdorf

Biotechnology and Biological Sciences Research Council (PhD studentship BB/L502169/1)

  • Jessica Sharrock

Deutsche Forschungsgemeinschaft (CIBSS-EXC-2189-Project ID 390939984)

  • Fabian Hersperger

European Commission (ERC starting grant 337689)

  • Olaf Gross

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kierdorf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,842
    views
  • 394
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katrin Kierdorf
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Gross
  9. Daria E Siekhaus
  10. Marc S Dionne
(2020)
Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila
eLife 9:e51595.
https://doi.org/10.7554/eLife.51595

Share this article

https://doi.org/10.7554/eLife.51595

Further reading

    1. Developmental Biology
    Wenyue Guan, Ziyan Nie ... Jonathan Enriquez
    Research Article

    Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in Drosophila known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis. Two RNA-binding proteins, Imp and Syp, play crucial roles in this process. Imp+ MNs survive, while Imp−, Syp+ MNs undergo apoptosis. Genetic experiments show that Imp promotes survival, whereas Syp promotes cell death in iMNs. Late-born MNs, which fail to express a functional code of transcription factors (mTFs) that control their morphological fate, are subject to elimination. Manipulating the expression of Imp and Syp in Lin A/15 NB and progeny leads to a shift of TF code in late-born MNs toward that of early-born MNs, and their survival. Additionally, introducing the TF code of early-born MNs into late-born MNs also promoted their survival. These findings demonstrate that the differential expression of Imp and Syp in iMNs links precise neuronal generation and distinct identities through the regulation of mTFs. Both Imp and Syp are conserved in vertebrates, suggesting that they play a fundamental role in precise neurogenesis across species.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article Updated

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.