Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila

  1. Katrin Kierdorf  Is a corresponding author
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Gross
  9. Daria E Siekhaus
  10. Marc S Dionne  Is a corresponding author
  1. University of Freiburg, Germany
  2. Imperial College London, United Kingdom
  3. Institute of Science and Technology Austria, Austria

Abstract

Unpaired ligands are secreted signals that act via a GP130-like receptor, domeless, to activate JAK/STAT signaling in Drosophila. Like many mammalian cytokines, unpaireds can be activated by infection and other stresses and can promote insulin resistance in target tissues. However, the importance of this effect in non-inflammatory physiology is unknown. Here, we identify a requirement for unpaired-JAK signaling as a metabolic regulator in healthy adult Drosophila muscle. Adult muscles show basal JAK-STAT signaling activity in the absence of any immune challenge. Plasmatocytes (Drosophila macrophages) are an important source of this tonic signal. Loss of the dome receptor on adult muscles significantly reduces lifespan and causes local and systemic metabolic pathology. These pathologies result from hyperactivation of AKT and consequent deregulation of metabolism. Thus, we identify a cytokine signal that must be received in muscle to control AKT activity and metabolic homeostasis.

Data availability

Data has been made available on Zenodo, under the doi 10.5281/zenodo.3608626.

The following data sets were generated

Article and author information

Author details

  1. Katrin Kierdorf

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    For correspondence
    katrin.kierdorf@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9272-4780
  2. Fabian Hersperger

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jessica Sharrock

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Crystal M Vincent

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Pinar Ustaoglu

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiawen Dou

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Attila Gyoergy

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1819-198X
  8. Olaf Gross

    Institute of Neuropathology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Daria E Siekhaus

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8323-8353
  10. Marc S Dionne

    Department of Life Sciences, Imperial College London, London, United Kingdom
    For correspondence
    m.dionne@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1750

Funding

Wellcome (Investigator Award 207467/Z/17/Z)

  • Marc S Dionne

Biotechnology and Biological Sciences Research Council (Research Grant BB/P000592/1)

  • Katrin Kierdorf
  • Pinar Ustaoglu
  • Marc S Dionne

Biotechnology and Biological Sciences Research Council (Research Grant BB/L020122/2)

  • Jessica Sharrock
  • Marc S Dionne

Medical Research Council (Research Grant MR/L018802/2)

  • Katrin Kierdorf
  • Marc S Dionne

Deutsche Forschungsgemeinschaft (Research fellowship KI-1876/1)

  • Katrin Kierdorf

Biotechnology and Biological Sciences Research Council (PhD studentship BB/L502169/1)

  • Jessica Sharrock

Deutsche Forschungsgemeinschaft (CIBSS-EXC-2189-Project ID 390939984)

  • Fabian Hersperger

European Commission (ERC starting grant 337689)

  • Olaf Gross

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: September 4, 2019
  2. Accepted: January 10, 2020
  3. Accepted Manuscript published: January 16, 2020 (version 1)
  4. Accepted Manuscript updated: January 20, 2020 (version 2)
  5. Version of Record published: February 3, 2020 (version 3)

Copyright

© 2020, Kierdorf et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,795
    views
  • 389
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katrin Kierdorf
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Gross
  9. Daria E Siekhaus
  10. Marc S Dionne
(2020)
Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila
eLife 9:e51595.
https://doi.org/10.7554/eLife.51595

Share this article

https://doi.org/10.7554/eLife.51595

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.