Spinal signaling of C-fiber mediated pleasant touch in humans

  1. Andrew G Marshall  Is a corresponding author
  2. Manohar L Sharma
  3. Kate Marley
  4. Hakan Olausson
  5. Francis P McGlone
  1. University of Liverpool, United Kingdom
  2. Walton Centre NHS Foundation Trust, United Kingdom
  3. University Hospital Aintree, United Kingdom
  4. Linköping University, Sweden
  5. Liverpool John Moores University, United Kingdom

Abstract

C-tactile afferents form a distinct channel that encodes pleasant tactile stimulation. Prevailing views indicate they project, as with other unmyelinated afferents, in lamina I-spinothalamic pathways. However, we found that spinothalamic ablation in humans, whilst profoundly impairing pain, temperature and itch, had no effect on pleasant touch perception. Only discriminative touch deficits were seen. These findings preclude privileged C-tactile-lamina I-spinothalamic projections and imply integrated hedonic and discriminative spinal processing from the body.

Data availability

All data generated or analysed during this study are either included in the manuscript and supporting files or Open Science Framework - accession code g8vyk

The following data sets were generated

Article and author information

Author details

  1. Andrew G Marshall

    Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    andrew.marshall@liverpool.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8273-7089
  2. Manohar L Sharma

    Department of Pain Medicine, Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kate Marley

    Specialist Palliative Care Team, University Hospital Aintree, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Hakan Olausson

    Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Francis P McGlone

    School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Pain Relief Foundation

  • Andrew G Marshall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval was obtained through the Health Research Authority National Research Ethics Service (Preston NRES committee, study reference 14/NW/1247). The study was conducted in accordance with the Declaration of Helsinki. Written informed consent was taken from all study participants.

Copyright

© 2019, Marshall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,320
    views
  • 512
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew G Marshall
  2. Manohar L Sharma
  3. Kate Marley
  4. Hakan Olausson
  5. Francis P McGlone
(2019)
Spinal signaling of C-fiber mediated pleasant touch in humans
eLife 8:e51642.
https://doi.org/10.7554/eLife.51642

Share this article

https://doi.org/10.7554/eLife.51642

Further reading

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.

    1. Neuroscience
    Jean-François Brunet
    Review Article

    Historically, the creation of the parasympathetic division of the autonomic nervous system of the vertebrates is inextricably linked to the unification of the cranial and sacral autonomic outflows. There is an intriguing disproportion between the entrenchment of the notion of a ‘cranio-sacral’ pathway, which informs every textbook schematic of the autonomic nervous system since the early XXth century, and the wobbliness of its two roots: an anatomical detail overinterpreted by Walter Holbrook Gaskell (the ‘gap’ between the lumbar and sacral outflows), on which John Newport Langley grafted a piece of physiology (a supposed antagonism of these two outflows on external genitals), repeatedly questioned since, to little avail. I retrace the birth of a flawed scientific concept (the cranio-sacral outflow) and the way in which it ossified instead of dissipated. Then, I suggest that the critique of the ‘cranio-sacral outflow’ invites, in turn, a radical deconstruction of the very notion of a ‘parasympathetic’ outflow, and a more realistic description of the autonomic nervous system.