Herpesviral lytic gene functions render the viral genome susceptible to novel editing by CRISPR/Cas9

  1. Hyung Suk Oh
  2. Werner M Neuhausser  Is a corresponding author
  3. Pierce Eggan
  4. Magdalena Angelova
  5. Rory Kirchner
  6. Kevin C Eggan
  7. David M Knipe  Is a corresponding author
  1. Harvard Medical School, United States
  2. Harvard University, United States
  3. Harvard T H Chan School of Public Health, United States

Abstract

Herpes simplex virus (HSV) establishes lifelong latent infection and can cause serious human disease, but current antiviral therapies target lytic but not latent infection. We screened for sgRNAs that cleave HSV-1 DNA sequences efficiently in vitro and used these sgRNAs to observe the first editing of quiescent HSV-1 DNA. The sgRNAs targeted lytic replicating viral DNA genomes more efficiently than quiescent genomes, consistent with the open structure of lytic chromatin. Editing of latent genomes caused short indels while editing of replicating genomes produced indels, linear molecules and large genomic sequence loss around the gRNA target site. The HSV ICP0 protein and viral DNA replication increased the loss of DNA sequences around the gRNA target site. We conclude that HSV, by promoting open chromatin needed for viral gene expression and by inhibiting the DNA damage response, makes the genome vulnerable to a novel form of editing by CRISPR-Cas9 during lytic replication.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used
    1. Miga KH
    2. Newton Y
    3. Jain M
    4. Altemose N
    5. Willard HF
    6. Kent WJ
    (2014) hg38
    Genome Reference Consortium, Human GRCh38.p12 (GCA_000001405.27).

Article and author information

Author details

  1. Hyung Suk Oh

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    Hyung Suk Oh, We have patent applications pending. U.S. Patent application No. 62/365,826, International Patent Application PCT/US2017/043225.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1739-0389
  2. Werner M Neuhausser

    Department of Obstetrics and Gynecology, Harvard Medical School, Boston, United States
    For correspondence
    wneuhaus@bidmc.harvard.edu
    Competing interests
    Werner M Neuhausser, We have patent applications pending. U.S. Patent application No. 62/365,826, International Patent Application PCT/US2017/043225.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5092-2658
  3. Pierce Eggan

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Magdalena Angelova

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    Magdalena Angelova, We have patent applications pending. U.S. Patent application No. 62/365,826, International Patent Application PCT/US2017/043225.
  5. Rory Kirchner

    Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  6. Kevin C Eggan

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    Kevin C Eggan, We have patent applications pending. U.S. Patent application No. 62/365,826, International Patent Application PCT/US2017/043225.
  7. David M Knipe

    Department of Microbiology, Harvard Medical School, Boston, United States
    For correspondence
    david_knipe@hms.harvard.edu
    Competing interests
    David M Knipe, Reviewing editor, eLifeWe have patent applications pending. U.S. Patent application No. 62/365,826, International Patent Application PCT/US2017/043225.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1554-6236

Funding

National Institutes of Health (P01 AI098681)

  • David M Knipe

National Institutes of Health (R21 AI135423)

  • Kevin C Eggan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara L Sawyer, University of Colorado Boulder, United States

Version history

  1. Received: September 6, 2019
  2. Accepted: December 1, 2019
  3. Accepted Manuscript published: December 2, 2019 (version 1)
  4. Version of Record published: December 17, 2019 (version 2)

Copyright

© 2019, Oh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,368
    views
  • 532
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyung Suk Oh
  2. Werner M Neuhausser
  3. Pierce Eggan
  4. Magdalena Angelova
  5. Rory Kirchner
  6. Kevin C Eggan
  7. David M Knipe
(2019)
Herpesviral lytic gene functions render the viral genome susceptible to novel editing by CRISPR/Cas9
eLife 8:e51662.
https://doi.org/10.7554/eLife.51662

Share this article

https://doi.org/10.7554/eLife.51662

Further reading

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.