Abstract

Tissue homeostasis is critically dependent on the function of tissue-resident lymphocytes, including lipid-reactive invariant natural killer T (iNKT) cells. Yet, if and how the tissue environment shapes the antigen specificity of iNKT cells remains unknown. By analysing iNKT cells from lymphoid tissues of mice and humans we demonstrate that their T cell receptor (TCR) repertoire is highly diverse and is distinct for cells from various tissues resulting in differential lipid-antigen recognition. Within peripheral tissues iNKT cell recent thymic emigrants exhibit a different TCR repertoire than mature cells, suggesting that the iNKT population is shaped after arrival to the periphery. Consistent with this, iNKT cells from different organs show distinct basal activation, proliferation and clonal expansion. Moreover, the iNKT cell TCR repertoire changes following immunisation and is shaped by age and environmental changes. Thus, post-thymic modification of the TCR-repertoire underpins the distinct antigen specificity for iNKT cells in peripheral tissues.

Data availability

The RNAseq data are available in the Gene Expression Omnibus (GEO) database with accession number GSE131420.

The following data sets were generated

Article and author information

Author details

  1. Rebeca Jimeno

    The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta Lebrusant-Fernandez

    The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Margreitter

    Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Beth Lucas

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Natacha Veerapen

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Gurdyal S Besra

    Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Franca Fraternali

    Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3143-6574
  8. Jo Spencer

    The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Graham Anderson

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Patricia Barral

    The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
    For correspondence
    patricia.barral@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4324-8973

Funding

Medical Research Council (MR/L008157/1)

  • Patricia Barral

Marie Curie Intraeuropean Fellowship (H2020-MSCA-IF-2015-703639)

  • Rebeca Jimeno

Medical Research Council (DKAA.RRAK18742)

  • Graham Anderson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chyung-Ru Wang, Northwestern University, United States

Ethics

Animal experimentation: All animal experiments were approved by the Francis Crick Institute's and the King's College London's Animal Welfare and Ethical Review Body and the United Kingdom Home Office.

Human subjects: Human tissues used in this study were collected with ethical approval from UK Research Ethics Committees administered through the Integrated Research Application System. All samples were collected with informed consent.

Version history

  1. Received: September 5, 2019
  2. Accepted: December 15, 2019
  3. Accepted Manuscript published: December 16, 2019 (version 1)
  4. Version of Record published: December 24, 2019 (version 2)
  5. Version of Record updated: March 18, 2020 (version 3)

Copyright

© 2019, Jimeno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,995
    views
  • 449
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebeca Jimeno
  2. Marta Lebrusant-Fernandez
  3. Christian Margreitter
  4. Beth Lucas
  5. Natacha Veerapen
  6. Gurdyal S Besra
  7. Franca Fraternali
  8. Jo Spencer
  9. Graham Anderson
  10. Patricia Barral
(2019)
Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells
eLife 8:e51663.
https://doi.org/10.7554/eLife.51663

Share this article

https://doi.org/10.7554/eLife.51663

Further reading

    1. Immunology and Inflammation
    Tong Feng, Qi Zhang ... Qiao-Feng Wu
    Research Article

    Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.