Resegmentation is an ancestral feature of the gnathostome vertebral skeleton
Abstract
The vertebral skeleton is a defining feature of vertebrate animals. However, the mode of vertebral segmentation varies considerably between major lineages. In tetrapods, adjacent somite halves recombine to form a single vertebra through the process of 'resegmentation'. In teleost fishes, there is considerable mixing between cells of the anterior and posterior somite halves, without clear resegmentation. To determine whether resegmentation is a tetrapod novelty, or an ancestral feature of jawed vertebrates, we tested the relationship between somites and vertebrae in a cartilaginous fish, the skate (Leucoraja erinacea). Using cell lineage tracing, we show that skate trunk vertebrae arise through tetrapod-like resegmentation, with anterior and posterior halves of each vertebra deriving from adjacent somites. We further show that tail vertebrae also arise through resegmentation, though with a duplication of the number of vertebrae per body segment. These findings resolve axial resegmentation as an ancestral feature of the jawed vertebrate body plan.
Data availability
Sequencing data have been deposited in GenBank (Uncx4.1 accession number MN478366 and Tbx18 accession number MN478367).CT scan data, including scan parameters and TIFF stacks, have been deposited in the Dryad Digital Repository, doi: 10.5061/dryad.b2rbnzs8s.
-
Resegmentation is an ancestral feature of the gnathostome vertebral skeletonDryad Digital Repository, doi:10.5061/dryad.b2rbnzs8s.
Article and author information
Author details
Funding
Royal Society (NF160762)
- Katharine E Criswell
Royal Society (UF130182)
- Andrew Gillis
Marine Biological Laboratory
- Katharine E Criswell
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimental work was conducted at the Marine Biological Laboratory in Woods Hole, Massachusetts, USA, in accordance with approved institutional animal care and use (IACUC) protocols (#17-31 and #18-32). All embryological manipulations and euthanasia were performed with use of the anaesthetic Ethyl 3-aminobenzoate methanesulfonate (MS-222 or tricaine) and all efforts were made to minimise suffering.
Copyright
© 2020, Criswell & Gillis
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,764
- views
-
- 232
- downloads
-
- 31
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
-
- Cell Biology
- Developmental Biology
A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.