A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses

  1. Suresh Pallikkuth
  2. Sidhartha Chaudhury
  3. Pinyi Lu
  4. Li Pan
  5. Erik Jongert
  6. Ulrike Wille-Reece
  7. Savita Pahwa  Is a corresponding author
  1. University of Miami Miller School of Medicine, United States
  2. Biotechnology HPC Software Applications Institute, U.S. Army Medical Research and Materiel Command, United States
  3. GSK Vaccine, Belgium
  4. PATH's Malaria Vaccine Initiative, United States
  5. University of Miami Miller School of Medicine, United States

Abstract

Malaria-071, a controlled human malaria infection trial, demonstrated that administration of three doses of RTS,S/AS01 malaria vaccine given at one month intervals was inferior to a delayed fractional dose (DFD) schedule (62.5% vs 86.7% protection respectively). To investigate the underlying immunologic mechanism, we analyzed the B and T peripheral follicular helper cell (pTfh) responses. Here we show that protection in both study arms was associated with early induction of functional IL-21-secreting circumsporozoite (CSP)-specific pTfh cells together with induction of CSP-specific memory B cell responses after the 2nd dose that persisted after the 3rd dose. Data integration of key immunologic measures identified a subset of non-protected individuals in the standard (STD) vaccine arm who lost prior protective B cell responses after receiving the 3rd vaccine dose. We conclude that the DFD regimen favors persistence of functional B cells post 3rd dose.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5

Article and author information

Author details

  1. Suresh Pallikkuth

    Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sidhartha Chaudhury

    Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, U.S. Army Medical Research and Materiel Command, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pinyi Lu

    Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, U.S. Army Medical Research and Materiel Command, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Pan

    Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik Jongert

    GSK Vaccine, Rixensart, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulrike Wille-Reece

    PATH's Malaria Vaccine Initiative, PATH's Malaria Vaccine Initiative, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Savita Pahwa

    Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    For correspondence
    spahwa@med.miami.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4470-4216

Funding

Program for Appropriate Technology in Health

  • Savita Pahwa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,660
    views
  • 289
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suresh Pallikkuth
  2. Sidhartha Chaudhury
  3. Pinyi Lu
  4. Li Pan
  5. Erik Jongert
  6. Ulrike Wille-Reece
  7. Savita Pahwa
(2020)
A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses
eLife 9:e51889.
https://doi.org/10.7554/eLife.51889

Share this article

https://doi.org/10.7554/eLife.51889

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.