A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses

  1. Suresh Pallikkuth
  2. Sidhartha Chaudhury
  3. Pinyi Lu
  4. Li Pan
  5. Erik Jongert
  6. Ulrike Wille-Reece
  7. Savita Pahwa  Is a corresponding author
  1. University of Miami Miller School of Medicine, United States
  2. Biotechnology HPC Software Applications Institute, U.S. Army Medical Research and Materiel Command, United States
  3. GSK Vaccine, Belgium
  4. PATH's Malaria Vaccine Initiative, United States
  5. University of Miami Miller School of Medicine, United States

Abstract

Malaria-071, a controlled human malaria infection trial, demonstrated that administration of three doses of RTS,S/AS01 malaria vaccine given at one month intervals was inferior to a delayed fractional dose (DFD) schedule (62.5% vs 86.7% protection respectively). To investigate the underlying immunologic mechanism, we analyzed the B and T peripheral follicular helper cell (pTfh) responses. Here we show that protection in both study arms was associated with early induction of functional IL-21-secreting circumsporozoite (CSP)-specific pTfh cells together with induction of CSP-specific memory B cell responses after the 2nd dose that persisted after the 3rd dose. Data integration of key immunologic measures identified a subset of non-protected individuals in the standard (STD) vaccine arm who lost prior protective B cell responses after receiving the 3rd vaccine dose. We conclude that the DFD regimen favors persistence of functional B cells post 3rd dose.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5

Article and author information

Author details

  1. Suresh Pallikkuth

    Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sidhartha Chaudhury

    Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, U.S. Army Medical Research and Materiel Command, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pinyi Lu

    Telemedicine and Advanced Technology Research Center, Biotechnology HPC Software Applications Institute, U.S. Army Medical Research and Materiel Command, Maryland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Pan

    Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Erik Jongert

    GSK Vaccine, Rixensart, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulrike Wille-Reece

    PATH's Malaria Vaccine Initiative, PATH's Malaria Vaccine Initiative, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Savita Pahwa

    Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    For correspondence
    spahwa@med.miami.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4470-4216

Funding

Program for Appropriate Technology in Health

  • Savita Pahwa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,689
    views
  • 292
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suresh Pallikkuth
  2. Sidhartha Chaudhury
  3. Pinyi Lu
  4. Li Pan
  5. Erik Jongert
  6. Ulrike Wille-Reece
  7. Savita Pahwa
(2020)
A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses
eLife 9:e51889.
https://doi.org/10.7554/eLife.51889

Share this article

https://doi.org/10.7554/eLife.51889

Further reading

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.