1. Immunology and Inflammation
Download icon

A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses

  1. Suresh Pallikkuth
  2. Sidhartha Chaudhury
  3. Pinyi Lu
  4. Li Pan
  5. Erik Jongert
  6. Ulrike Wille-Reece
  7. Savita Pahwa  Is a corresponding author
  1. University of Miami Miller School of Medicine, United States
  2. Walter Reed Army Institute of Research, United States
  3. Biotechnology High Performance Computing Software Applications Institute (BHSAI), United States
  4. GSK Vaccine, Belgium
  5. PATH's Malaria Vaccine Initiative, United States
Research Article
  • Cited 19
  • Views 1,120
  • Annotations
Cite this article as: eLife 2020;9:e51889 doi: 10.7554/eLife.51889

Abstract

Malaria-071, a controlled human malaria infection trial, demonstrated that administration of three doses of RTS,S/AS01 malaria vaccine given at one month intervals was inferior to a delayed fractional dose (DFD) schedule (62.5% vs 86.7% protection respectively). To investigate the underlying immunologic mechanism, we analyzed the B and T peripheral follicular helper cell (pTfh) responses. Here we show that protection in both study arms was associated with early induction of functional IL-21-secreting circumsporozoite (CSP)-specific pTfh cells together with induction of CSP-specific memory B cell responses after the 2nd dose that persisted after the 3rd dose. Data integration of key immunologic measures identified a subset of non-protected individuals in the standard (STD) vaccine arm who lost prior protective B cell responses after receiving the 3rd vaccine dose. We conclude that the DFD regimen favors persistence of functional B cells post 3rd dose.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4 and 5

Article and author information

Author details

  1. Suresh Pallikkuth

    Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    No competing interests declared.
  2. Sidhartha Chaudhury

    Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    No competing interests declared.
  3. Pinyi Lu

    Immunology & Vaccine Research, Biotechnology High Performance Computing Software Applications Institute (BHSAI), Maryland, United States
    Competing interests
    No competing interests declared.
  4. Li Pan

    Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    No competing interests declared.
  5. Erik Jongert

    GSK Vaccine, Rixensart, Belgium
    Competing interests
    Erik Jongert, is an employee of GSK, and own shares of GSK.
  6. Ulrike Wille-Reece

    PATH's Malaria Vaccine Initiative, PATH's Malaria Vaccine Initiative, Washington DC, United States
    Competing interests
    No competing interests declared.
  7. Savita Pahwa

    Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, United States
    For correspondence
    spahwa@med.miami.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4470-4216

Funding

PATH's Malaria Vaccine Initiative

  • Savita Pahwa

The funder contributed to conceptualization, data review and manuscript preparation.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Publication history

  1. Received: September 15, 2019
  2. Accepted: April 14, 2020
  3. Accepted Manuscript published: April 28, 2020 (version 1)
  4. Accepted Manuscript updated: April 29, 2020 (version 2)
  5. Version of Record published: May 11, 2020 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,120
    Page views
  • 202
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    Rafael Bayarri-Olmos et al.
    Research Article Updated

    The alpha/B.1.1.7 SARS-CoV-2 lineage emerged in autumn 2020 in the United Kingdom and transmitted rapidly until winter 2021 when it was responsible for most new COVID-19 cases in many European countries. The incidence domination was likely due to a fitness advantage that could be driven by the receptor-binding domain (RBD) residue change (N501Y), which also emerged independently in other variants of concern such as the beta/B.1.351 and gamma/P.1 strains. Here, we present a functional characterization of the alpha/B.1.1.7 variant and show an eightfold affinity increase towards human angiotensin-converting enzyme-2 (ACE-2). In accordance with this, transgenic hACE2 mice showed a faster disease progression and severity after infection with a low dose of B.1.1.7, compared to an early 2020 SARS-CoV-2 isolate. When challenged with sera from convalescent individuals or anti-RBD monoclonal antibodies, the N501Y variant showed a minor, but significant elevated evasion potential of ACE-2/RBD antibody neutralization. The data suggest that the single asparagine to tyrosine substitution remarkable rise in affinity may be responsible for the higher transmission rate and severity of the B.1.1.7 variant.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Koshlan Mayer-Blackwell et al.
    Research Article

    T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes – groups of biochemically similar TCRs – that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.